• Title/Summary/Keyword: Path generation

Search Result 836, Processing Time 0.027 seconds

A Study on Diffusion Path Tracking based on Multi-Dimensional Time, Performance and Price of Multiple Generation Technology: Case of Logic Semiconductor Diffusion (시간, 성능 및 가격의 다차원 기반 다세대 기술의 확산경로(Diffusion Path) 추적에 대한 연구 : 로직 반도체의 기술 확산 사례)

  • Park, Changhyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.108-115
    • /
    • 2018
  • Time is considered as an important factor to understand the diffusion behavior of single generation technology. However, multiple generation technology required additional factors in addition to time to understand the diffusion behavior. This study defined the diffusion path of multiple generation technology based on dimensions of 'time, price, and performance' after extracting price and technical performance factors and traced the diffusion path of semiconductor industry based on defined dimensions. The case study of semiconductor industry indicated that the diffusion path is determined maximizing the integrated area of price and performance. This study has theoretical implications in that it analyzed the diffusion behavior of multiple generation technology based on multiple dimensions and can forecast the diffusion behavior at matured as well as early stage technology. Also, this study has practical implications for R&D and marketing managers to understand time-to-market, exit time, and economical as well as technical requirements.

Real-time Obstacle Detection and Avoidance Path Generation Algorithm for UAV (무인항공기용 실시간 장애물 탐지 및 회피 경로 생성 알고리즘)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.623-629
    • /
    • 2018
  • In this paper, we propose a real-time obstacle detection and avoidance path generation algorithm for UAV. 2-D Lidar is used to detect obstacles, and the detected obstacle data is used to generate real-time histogram for local avoidance path and a 2-D SLAM map used for global avoidance path generation to the target point. The VFH algorithm for local avoidance path generation generates a real-time histogram of how much the obstacles are distributed in the vector direction and distance, and this histogram is used to generate the local avoidance path when detecting near fixed or dynamic obstacles. We propose an algorithm, called modified $RRT^*-Smart$, to overcome existing limitations. That generates global avoidance path to the target point by creating lower costs because nodes are checked whether or not straight path to a target point, and given arbitrary lengths and directionality to the target points when nodes are created. In this paper, we prove the efficient avoidance maneuvering through various simulation experiment environment by creating efficient avoidance paths.

Development of a Path Generation and Tracking Algorithm for a Korean Auto-guidance Tillage Tractor

  • Han, Xiong-Zhe;Kim, Hak-Jin;Moon, Hee-Chang;Woo, Hoon-Je;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Purpose: Path planning and tracking algorithms applicable to various agricultural operations, such as tillage, planting, and spraying, are needed to generate steering angles for auto-guidance tractors to track a point ahead on the path. An optimal coverage path algorithm can enable a vehicle to effectively travel across a field by following a sequence of parallel paths with fixed spacing. This study proposes a path generation and tracking algorithm for an auto-guided Korean tractor with a tillage implement that generates a path with C-type turns and follows the generated path in a paddy field. A mathematical model was developed to generate a waypoint path for a tractor in a field. This waypoint path generation model was based on minimum tractor turning radius, waypoint intervals and LBOs (Limit of Boundary Offsets). At each location, the steering angle was calculated by comparing the waypoint angle and heading angle of the tractor. A path following program was developed with Labview-CVI to automatically read the waypoints and generate steering angles for the tractor to proceed to the next waypoint. A feasibility test of the developed program for real-time path tracking was performed with a mobile platform traveling on flat ground. The test results showed that the developed algorithm generated the desired path and steering angles with acceptable accuracy.

Path Generation Method of UAV Autopilots Using Max-Min Algorithm

  • Kwak, Jeonghoon;Sung, Yunsick
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1457-1463
    • /
    • 2018
  • In recent times, Natural User Interface/Natural User Experience (NUI/NUX) technology has found widespread application across a diverse range of fields and is also utilized for controlling unmanned aerial vehicles (UAVs). Even if the user controls the UAV by utilizing the NUI/NUX technology, it is difficult for the user to easily control the UAV. The user needs an autopilot to easily control the UAV. The user needs a flight path to use the autopilot. The user sets the flight path based on the waypoints. UAVs normally fly straight from one waypoint to another. However, if flight between two waypoints is in a straight line, UAVs may collide with obstacles. In order to solve collision problems, flight records can be utilized to adjust the generated path taking the locations of the obstacles into consideration. This paper proposes a natural path generation method between waypoints based on flight records collected through UAVs flown by users. Bayesian probability is utilized to select paths most similar to the flight records to connect two waypoints. These paths are generated by selection of the center path corresponding to the highest Bayesian probability. While the K-means algorithm-based straight-line method generated paths that led to UAV collisions, the proposed method generates paths that allow UAVs to avoid obstacles.

Laser Scanning Path Generation for the Fabrication of Large Size Shape

  • Choi, Kyung-Hyun;Choi, Jae-Won;Doh, Yang-Hoe;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2175-2178
    • /
    • 2005
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It has been used to fabricate desirable part to sinter powder and stack the fabricated layer. Since the sintering process occurs using infrared laser having high thermal energy, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, the fast scanning path generation is necessary to eliminate the factors of quality deterioration. In case of fabricating larger size parts, the unique scanning device and scanning path generation should be considered. In this paper, the development of SLS machines being capable of large size fabrication(800${\times}$1000${\times}$800 mm, W${\times}$D${\times}$H) will be addressed. The dual laser system and the unique scanning device have been designed and built, which employ CO2 lasers and dynamic 3-axis scanners. The developed system allows scanning a larger planar surface with the desired laser spot size. Also, to generate the fast scanning paths, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction should be enabled. To evaluate the suggested method, the complex part will be used for the experiment fabrication.

  • PDF

Development of Path Generation and Following Simulator for a Simulation Test of a Moving Object (이동체 모의시험을 위한 경로 생성 및 추종 시뮬레이터 개발)

  • Han, Youngmin;Hong, Dongho;Jang, Taeksoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.842-849
    • /
    • 2018
  • This research suggests the development of simulator for a Simulation Test of a moving object's path generation and following. There are many kinds of moving objects in weapon systems, such as vehicles, missiles, robots and so on. So need tests of moving simulations during development process of weapon systems. To simulate a moving object, need an flexible path. So this report suggests a $B\acute{e}zier$ curve algorithm for generation of smooth curve path. And when new developments of weapon systems are started, many kinds of simulators are created. But, these simulators are not reused in other project because there are different kinds of development environment. So need to allow users to add specific features, And this report suggests using Dynamic Link Library(DLL).

An Efficient Robot Path Generation Using Delaunay Mesh (딜레노이 메시를 이용한 효율적인 로봇 경로 생성방법)

  • Noh, Sung-Woo;Ko, Nak-Yong;Kim, Kwang-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • This paper proposes a path planning method of a mobile robot in two-dimensional work space. The path planning method is based on a cell decomposition approach. To create a path which consists of a number of line segments, the Delaunay Triangulation algorithm is used. Using the cells produced by the Delaunay Triangulation algorithm, a mesh generation algorithm connects the starting position to the goal position. Dijkstra algorithm is used to find the shortest distance path. Greedy algorithm optimizes the path by deleting the path segments which detours without collision with obstacles.

Smoothly Connected Path Generation and Time-Scheduling Method for Industrial Robot Applications (산업용로봇 작업을 위한 유연한 연결경로 생성과 시간계획)

  • Lee Won-Il;Ryu Seok-Chang;Cheong Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.671-678
    • /
    • 2006
  • This article proposes a smooth path generation and time scheduling method for general tasks defined by non-smooth path segments in industrial robotic applications. This method utilizes a simple 3rd order polynomial function for smooth interpolation between non-smooth path segments, so that entire task can effectively maintain constant line speed of operation. A predictor-corrector type numerical mapping technique, which correlates time based speed profile to the smoothed path in Cartesian space, is also provided. Finally simulation results show the feasibility of the proposed algorithm.

A Study on Generation of the Advanced Laser Scanning Path for Stereolithography using Voronoi Diagrams (Voronoi Diagram 을 이용한 Stereo;ithography 의 향상된 레이져 주사경로 생성에 관한 연구)

  • 이기현;최홍태;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.405-409
    • /
    • 1997
  • Voronoi diagrams are applied in varios field such as NC toolpath generation, VLSI design and robot path planning because of their geometric charcteristics. In this paper, Voronoi diagrams are introduced on polygon constructed by line segments only and with constant offset. Bisector curves for two arbitrary objects, which is the combination of line segment and arc, are defined as parametric fuction where the parameter is used as offset. Offset curves are applied on the generation of laser scanning path for the stereolithography and shows a good result from several examples.

  • PDF

A Study on Flight Trajectory Generations and Guidance/Control Laws : Validation through HILS (무인항공기의 비행경로 생성 및 유도제어 알고리즘 연구 : HILS를 통한 검증)

  • Baek, Soo-Ho;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1238-1243
    • /
    • 2008
  • This paper presents an HILS(Hardware in the Loop Simulations) based experimental study for the UAV's flight trajectory planning/generation algorithms and guidance/control laws. For the various mission that is loaded on each waypoint, proper trajectory planning and generation algorithms are applied to achieve best performances. Specially, the 'smoothing path' generation and the 'tangent orbit path' guidance laws are presented for the smooth path transitions and in-circle loitering mission, respectively. For the control laws that can minimize the effects of side wind, side slip angle($\beta$) feedback to the rudder scheme is implemented. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether via HILS.