• Title/Summary/Keyword: Paste electrode

Search Result 256, Processing Time 0.03 seconds

Diagnostic Ex-Vivo Assay of glucose Using Diabetic-Control Circuits

  • Ly, Suw-Young;Kim, Nam-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.210-217
    • /
    • 2014
  • For ex-vivo diabetic control, the voltammetric diagnosis of glucose (GU) was conducted with a modified carbon nanotube paste electrode, using handheld analytical circuits. The optimum analytical conditions were attained within the 0.5-4.0 ug/L working range and at the 0.06 ug/L detection limit, which system was interfaced to the feedback circuits and was applied to human urine for diabetic-patient diagnosis. It can be used for ex-vivo flow control analysis, vascular flow detection, and other medicinal assays.

The fabrication of electrodes with low resistance and fine pattern for PDP

  • Cho, Soo-Je;Ryu, Byung-Gil;Park, Myung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.107-108
    • /
    • 2000
  • We propose the method which is possible to fabricate the electrodes with the fine pattern and low resistance by photolithography and electroplating. The widths of pattern fabricated were 30, 50, 70 and 100um and the thickness could be up to $10{\mu}m$. The resistivity of the copper electrode electroplated was below $2.0{\mu}{\Omega}$ cm which is about half of photosensitive silver electrode. Dielectric layer was coated on the electrodes by screen printing and the pores harmful to the discharge were not formed after heat treatment. In the viewpoint of resistance and patterning, this method has much higher potential for large area display than other methods like screen printing, photosensitive conductive paste method and sputtering.

  • PDF

Effect of Curing on Positive Plate Behavior in Lead-Acid Battery (숙성조건에 따른 연축전지용 양극 극판의 특성 연구)

  • 김상필;남기윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.177-181
    • /
    • 1995
  • Lead-acid battery is used widely as a power source in the automobile, industrial machines, folk lifts U.P.S etc. But this battery has man\ulcorner disadvantages such as heavy low energy density, environment problem etc. In this paper, we have studied the physicochemical and electrochemical properties of lead-acid battery positive plates with regard to the method of curing. It has been observed that curing conditions strongly influence electrode composition and electrchemical performance.

  • PDF

Field Emission Characteristics of Surface-treated CNT Emitter by Ar Ion Bombardment (아르곤 이온에 의해 표면처리된 CNT 에미터의 전계방출 특성)

  • Kwon, Sang-Jik
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A surface treatment was performed after the screen printing of a carbon nanotube paste for obtaining the carbon nanotube field emission array(CNT FEA) on the soda-lime glass substrate. In this experiment, Ar ion bombardment was applied as an effective surface treatment method. After making a cathode electrode on the glass substrate, photo sensitive CNT paste was screen-printed, and then back-side was exposure by uv light. Then, the exposed CNT paste was selectively remained by development. After post-baking, the remained CNT paste was bombarded by accelerated Ar ions for removing some binders and exposing only CNTs. As results, the field emission characteristics were strongly depended on the accelerating energy. At 100 eV, the emission was highest and as the acceleration energy increases more then 100 eV, the emission decreased. This was due to the removal of CNT itself as well as binders.

Electrochemical Properties of Dye-sensitized Solar Cells Using TiO2 Paste Prepared by Simple Process (Simple 프로세스로 제조된 TiO2 페이스트를 이용한 염료감응 태양전지의 전기화학적 특성)

  • Zhao, Xing Guan;Park, Ju-Young;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.718-724
    • /
    • 2014
  • In this work, in order to manufacture the photoelectrode of dye-sensitized solar cells, the different anatase $TiO_2$ paste was prepared by simple route using hydrothermal method. In comparison with the traditional preparing process, the hydrothermally synthesized $TiO_2$ gel was used to make paste directly. Thus, the making process was simplified and the solar conversion efficiency was improved. In comparison with 5.34% solar energy efficiency of HP-1 photoelectrode, the 6.23% efficiency of HDP-1 electrode was improved by 16.67%. This is because hydrothermally synthesized $TiO_2$ gel was used to make paste directly, the dispersibility between $TiO_2$ particles was improved and get the smoother network, leading to the charge transport ability of the electron generated in dye molecular was improved. Further, HDP-2 photoelectrode delivered the best results with Voc (open circuit voltage), Jsc (short circuit current density) FF (fill factor) and ${\eta}$(solar conversion efficiency) were 0.695 V, $15.81mA\;cm^{-2}$, 61.48% and 6.80%, respectively. In comparison with 5.34% of HP-1 photoelectrode, it was improved by 27.34%.

A Study on the Formation of Detection Electrode for the IED Removal Robot by Using A Photosensitive CNT Paste (감광성 CNT 페이스트를 이용한 IED 폭발물 제거로봇 탐지전극 형성에 관한 연구)

  • Kwon, Hye Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.231-237
    • /
    • 2018
  • In this study, two important requirements for the home production of a robot to detect and remove improvised explosive devices (IEDs) are presented in terms of the total cost for robot system development and the performance improvement of the mine detection technology. Firstly, cost analyses were performed in order to provide a reasonable solution following an engineering estimate method. As a result, the total cost for a mass production system without the mine detection system was estimated to be approximately 396 million won. For the case including the mine detection system, the total cost was estimated to be approximately 411 million won, in which labor costs and overhead charges were slightly increased and the material costs for the mine detection system were negligible. Secondly, a method for fabricating the carbon nanotube (CNT) based gas detection sensor was studied. The detection electrodes were formed by a photolithography process using a photosensitive CNT paste. As a result, this method was shown to be a scalable and expandable technology for producing excellent mine detection sensors. In particular, it was found that surface treatments by using adhesive taping or ion beam bombardment methods are effective for exposing the CNTs to the ambient air environment. Fowler-Nordheim (F-N) plots were obtained from the electron-emission characteristics of the surface treated CNT paste. The F-N plot suggests that sufficient electrons are available for transport between CNT surfaces and chemical molecules, which will make an effective chemiresistive sensor for the advanced IED detection system.

Hydrogen Peroxide Sensitive Biosensors Based on Mugwort-Peroxidase Entrapped in Carbon Pastes (탄소반죽에 쑥 과산화효소를 고정한 과산화수소 감응 바이오센서)

  • Yoon, Kil Joong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.624-629
    • /
    • 2015
  • A biosensor including the homogenized tissue of mugwort embedded in carbon paste, which senses hydrogen peroxide, was constructed and its electrochemical properties were validated using voltammetry. The good linearity of Hanes-Woolf plot implied that the reduction reaction of substrate was catalyzed by mugwort peroxidase at the electrode surface. Also the small value of symmetry factor, 0.28, indicated that electrochemical kinetics of the sensor is very sensitive to the change of electrode potential. Many experimental results collected above proved that the dissociation of hydrogen peroxide is dependent on the catalytic power of mugwort peroxidase qualitatively and quantitatively at the surface of the mugwort electrode. It is our firm belief that the marketed HRP can be replaced with mugwort tissue.

Highly-sensitive Detection of Salvianolic Acid B using Alumina Microfibers-modified Electrode

  • Sun, Dong;Zheng, Xiaoyong;Xie, Xiafeng;Yang, Xiaofeng;Zhang, Huajie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3357-3361
    • /
    • 2013
  • Alumina microfibers with porous structures were prepared through hydrothermal reaction, and then used to modify the surface of carbon paste electrode (CPE). After modification with alumina microfibers, the electrochemical activity of CPE was found to be greatly improved. On the surface of alumina microfibers-modified CPE, the oxidation peak current of salvianolic acid B, a main bioactive compound in Danshen with anti-oxidative and anti-inflammatory effects, was remarkably increased compared with that on the bare CPE surface. The influences of pH value, amount of alumina microfibers and accumulation time were studied. Based on the strong signal amplification effects of alumina microfibers, a novel electrochemical method was developed for the detection of salvianolic acid B. The linear range was from 5 ${\mu}gL^{-1}$ to 0.3 mg $L^{-1}$, and the detection limit was 2 ${\mu}gL^{-1}$ (2.78 nM) after 1-min accumulation. The new method was successfully used to detect salvianolic acid B in ShuangDan oral liquid samples, and the recovery was over the range from 97.4% to 102.9%.

A study of DSC using Ultrasonic and Thermal treatment on Photo-Electrode (염료감응형 태양전지 광전극 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Kim, Mi-Jeong;Sim, Ji-Yong;Seo, Hyun-Woong;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1291-1292
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of DSC.[1] Using of the surface treatment, it can be raise up porosity of $TiO_2$ nano-crystalline structure on photo-electrode. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_2$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against monolithic DSC. And it shows stability of light-harvesting from drastically change of light irradiation test.

  • PDF