• Title/Summary/Keyword: Passive UHF RFID Tag

Search Result 37, Processing Time 0.023 seconds

Analysis of Performance Elements for Passive RFID Tag Antennas (수동형 RFID 태그 안테나 성능 요소 분석)

  • Kwon, Hong-Il;Lee, Jong-Wook;Lee, Bom-Son
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.241-244
    • /
    • 2005
  • 본 논문에서는 UHF 대역 수동형 RFID 태그 안테나의 최적 설계에 필요한 요소들과 전파 음영 문제를 최소화 할 수 있는 다중 리더 안테나 방식에 대하여 분석하였다. 또한, 칩 설계시 RCS 특성이 우수한 칩 임피던스 범위를 설정해 보았으며, 등방성 방사패턴을 갖는 태그 안테나의 필요성과 설계 예를 보였다.

  • PDF

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

An Implementation of a RFID Reader Firmware for ISO/IEC 18000-6 Type B Specification (ISO/IEC18000-6 Type B 규격에 적합한 리더 펌웨어 개발)

  • Yang, Jing-Gil;Bae, Sung-Woo;Jung, Myung-Sub;Jang, Byung-Jun;Kim, Jun-O;Park, Jun-Seok;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1039-1042
    • /
    • 2005
  • Recently, a considerable number of studies have been made on the $RFID^{[1-6]}$ systems. RFID is a technique of identifying an object using radio frequency transmission. The technology can be used to identify, track, sort or detect a wide variety of objects. The RFID system is composed of two main elements: a reader and a tag. Tags can either be active (powered by battery) or passive (powered by the reader field). The passive tags communicate back to the reader with a technique called 'backscatter'. RFID technology can be applied to the supply chain, security, logistics industry and etc. Especially, UHF RFID is worth noticing because of its relatively long identification range and commercial UHF RFID systems are under development. In this paper, we designed and implemented a UHF RFID reader firmware for ISO/IEC 18000-6 Type B specification.

  • PDF

Implementation & Verification of RFID Gen2 Protocol on FPGA Prototyping board (FPGA를 이용한 RFID Gen2 protocol의 구현 및 검증)

  • Je, Young-Dai;Kim, Jae-Lim;Jang, Il-Su;Yang, Hoon-Gee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.869-872
    • /
    • 2008
  • This paper presents the VHDL implementation procedure of the passive RFID tag in Ultra High Frequency RFID system. The operation of the tag compatible with the EPCglobal Class1 Generation2(GEN2) protocol is verified by timing simulation after synthesis and implementation on prototyping board. Due to the reading range with relatively large distance, a passive tag needs digital processor which facilitates faster decoding, encoding and state transition for enhancement of the interrogation rate. Also with UART communication, verify a inventory Round in Gen2 Protocol. The verification results with the fastest data rate, 640kbps, and multi tags environment scenario show that the implemented tag spend 1.4ms transmitting the 96bits EPC to reader.

  • PDF

An RFID Tag Using a Planar Inverted-F Antenna Capable of Being Stuck to Metallic Objects

  • Choi, Won-Kyu;Son, Hae-Won;Bae, Ji-Hoon;Choi, Gil-Young;Pyo, Cheol-Sig;Chae, Jong-Suk
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.216-218
    • /
    • 2006
  • This letter presents the design for a low-profile planar inverted-F antenna (PIFA) that can be stuck to metallic objects to create a passive radio frequency identification (RFID) tag in the UHF band. The designed PIFA, which uses a dielectric substrate for the antenna, consists of a U-slot patch for size reduction, several shorting pins, and a coplanar waveguide feeding structure to easily integrate with an RFID chip. The impedance bandwidth and maximum gain of the tag antenna are about 0.3% at 914 MHz for a voltage standing wave ratio (VSWR) of less than 2 and 3.6 dBi, respectively. The maximum read range is about 4.5 m as long as the tag antenna is on a metallic object.

  • PDF

Low-Power 512-Bit EEPROM Designed for UHF RFID Tag Chip

  • Lee, Jae-Hyung;Kim, Ji-Hong;Lim, Gyu-Ho;Kim, Tae-Hoon;Lee, Jung-Hwan;Park, Kyung-Hwan;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.347-354
    • /
    • 2008
  • In this paper, the design of a low-power 512-bit synchronous EEPROM for a passive UHF RFID tag chip is presented. We apply low-power schemes, such as dual power supply voltage (VDD=1.5 V and VDDP=2.5 V), clocked inverter sensing, voltage-up converter, I/O interface, and Dickson charge pump using Schottky diode. An EEPROM is fabricated with the 0.25 ${\mu}m$ EEPROM process. Power dissipation is 32.78 ${\mu}W$ in the read cycle and 78.05 ${\mu}W$ in the write cycle. The layout size is 449.3 ${\mu}m$ ${\times}$ 480.67 ${\mu}m$.

  • PDF

RFID Smart Floor for Mobile Robot (이동로봇을 위한 RFID Smart Floor)

  • Kang, Soo-Hyeok;Kim, Yong-Ho;Moon, Byoung-Joon;Kim, Dong-Han
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.30-39
    • /
    • 2011
  • This paper proposed a new concept of information space called Smart Floor. Smart Floor is an intelligent space where a mobile robot can read and write specific information through Radio Frequency IDentification (RFID) tags which are mounted on Smart Floor to drive its goal position. RFID tag packaging technology is described for building Smart Floor. Also a mobile robot equipped passive RFID System with ultra high frequency (UHF) bandwidth has developed. The information that consists of an absolute position in the Smart Floor and desired direction saved on RFID tags is a simulated Q-value based on Q-learning algorithm. Proposed Smart Floor will be a proper method to communicate between space and robot.

High Security FeRAM-Based EPC C1G2 UHF (860 MHz-960 MHz) Passive RFID Tag Chip

  • Kang, Hee-Bok;Hong, Suk-Kyoung;Song, Yong-Wook;Sung, Man-Young;Choi, Bok-Gil;Chung, Jin-Yong;Lee, Jong-Wook
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.826-832
    • /
    • 2008
  • The metal-ferroelectric-metal (MFM) capacitor in the ferroelectric random access memory (FeRAM) embedded RFID chip is used in both the memory cell region and the peripheral analog and digital circuit area for capacitance parameter control. The capacitance value of the MFM capacitor is about 30 times larger than that of conventional capacitors, such as the poly-insulator-poly (PIP) capacitor and the metal-insulator-metal (MIM) capacitor. An MFM capacitor directly stacked over the analog and memory circuit region can share the layout area with the circuit region; thus, the chip size can be reduced by about 60%. The energy transformation efficiency using the MFM scheme is higher than that of the PIP scheme in RFID chips. The radio frequency operational signal properties using circuits with MFM capacitors are almost the same as or better than with PIP, MIM, and MOS capacitors. For the default value specification requirement, the default set cell is designed with an additional dummy cell.

  • PDF

Design of a Low-Power and Low-Area EEPROM IP of 256 Bits for an UHF RFID Tag Chip (UHF RFID 태그 칩용 저전력, 저면적 256b EEPROM IP 설계)

  • Kang, Min-Cheol;Lee, Jae-Hyung;Kim, Tae-Hoon;Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.671-674
    • /
    • 2009
  • We design a low-power and low-area asynchronous EEPROM of 256 bits used in a passive UHF RFID tag chip. For a low-power solution, we use a supply voltage of 1.8V and design a Dickson charge pump using N-type Schottky diodes with a low-voltage characteristic. And we use an asynchronous interface and a separate I/O method for a low-area solution of the peripheral circuit of the designed EEPROM. And we design a Dickson charge pump using N-type Schottky diodes to reduce an area of DC-DC converter. The layout area of the designed EEPROM of 256 bits with an array of 16 rows and 16 columns using $0.18{\mu}m$ EEPROM process is $311.66{\times}490.59{\mu}m^2$.

  • PDF

A Wireless Identification System Using an Efficient Antenna Based on Passive Surface Acoustic Wave(SAW) Devices

  • Chang, Ki-Hun;Lee, Woo-Sung;Yoon, Young-Joong;Kim, Jae-Kwon;Park, Joo-Yong;Burm, Jin-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • A UHF band wireless identification system based on passive surface acoustic wave(SAW) devices is presented in this paper. SAW ID tags were fabricated on Y-Z $LiNbO_3$ piezoelectric substrate with a good electro-mechanical coupling property. To reduce degradation of the antenna performance associated with the piezoelectric materials, an efficient design of the SAW RFID antenna is introduced. By measuring the parameters of the SAW ID tag, the performance of the antenna was tested by experimentation.