• Title/Summary/Keyword: Passivation

Search Result 840, Processing Time 0.033 seconds

Effectiveness of parylene coating on CdZnTe surface after optimal passivation

  • B. Park;Y. Kim;J. Seo;K. Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4693-4697
    • /
    • 2022
  • Parylene coating was adopted on CdZnTe (CZT) detector as a mechanical protection layer after wet passivation with hydrogen peroxide (H2O2) and ammonium fluoride (NH4F). Wet chemical passivant lose their effectiveness when exposed to the ambient conditions for a long time. Parylene coating could protect the effectiveness of passivation, by mechanically blocking the exposure to the ambient conditions. Stability of CZT detector was tested with the measurement of leakage current density and response to radio-isotopes. When the enough thickness of parylene (>100 ㎛) is adopted, parylene is a promising protection layer thereby ensuring the performance and long-term stability of CZT detectors.

Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy (SSC13 주강품의 내부식특성에 미치는 고용화 열처리 영향)

  • Kim, Kuk-Jin;Lim, Su-Gun;Pak, S.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of $34^{\circ}C$ and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at $1120^{\circ}C$ and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at $34^{\circ}C$ nitric acid solution.

The Effect of Passivation Film with Inorganic/Epoxy Layers on Life Time Characteristics of OLED Device (OLED 내구성에 미치는 무기/에폭시층 보호막의 영향)

  • Lim, Jung-A;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.287-293
    • /
    • 2009
  • The passivation films with epoxy layer on LiF, $SiN_x$ and LiF/$SiN_x$ inorganic layer were fabricated on OLED to protect device from the direct damage of $O_2$ and $H_2O$ and to apply for a buffer layer between OLED device and passivation multi-layer with organic/inorganic hybrid structure as to diminish the thermal stress and expansion. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The device structure was multi-layer of ITO(150 nm) / ELM200_HIL(50 nm) / ELM002_HTL(30 nm) / $Alq_3$: 1 vol.% Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). LiF/epoxy applied as a protective layer didn't contribute to the improvement of life time. While in case of $SiN_x$/epoxy, damage was done in the passivation process because of difference in heat expansion between films which could occur during the formation of epoxy film. Using LiF/$SiN_x$/epoxy improved lifetime significantly without suffering damage in the process of forming films, therefore, the best structure of passivation film with inorganic/epoxy layers was LiF/$SiN_x$/E1.

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF

Study on SiNx double layer anti-reflection coating for crystalline solar cell application (결정질 태양전지 적용을 위한 SiNx 이중구조 반사방지막에 관한 연구)

  • Gong, Daeyeong;Park, Seungman;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.1-93.1
    • /
    • 2010
  • 반사방지막은 태양전지 표면에서의 광 반사를 낮춰주며, Si wafer 표면에서의 carrier의 재결합을 줄이는 passivation 역할을 한다. 이를 위한 다양한 물질이 반사방지막으로 사용된다. 단일박막은 passivation 효과가 미미하여 최근 passivation 향상에 도움이 되는 이중구조 반사방지막이 널리 연구되어지고 있다. 하지만 물질이 다양해짐에 따라 공정시간 및 비용이 늘어나고, passivation에 최적화된 물질사용이 필수적으로 요구되는 단점이 있다. 따라서 본 연구에서는 기존에 passivation 효과가 뛰어나다고 알려진 SiNx의 굴절률 가변을 통하여 이중구조를 갖는 박막을 반사방지막으로 이용하여 그 특성을 비교, 분석하였다. SiNx 이중반사방지막은 0.8 Torr~1 Torr의 압력에서 $450^{\circ}C$의 기판온도로 PECVD를 이용하여 증착되었으며 이때의 plasma power는 180mW/$cm^2$으로 고정 하였다. 굴절률 1.9 및 2.3을 갖는 가스 조성비를 이용하여 각 layer의 두께를 20/60nm, 30/50nm, 40/40nm로 가변하였다. 샘플 제작 후 Sun-Voc 측정을 통하여 implied Voc 및 효율을 측정하였다. 단일반사방지막을 사용한 샘플의 경우 608mV의 implied Voc가 측정되었으며, FF는 82.8%, 효율은 17.6%로 측정되었다. 가장 우수한 특성을 나타낸 20/60nm의 두께로 증착된 샘플의 경우 implied Voc는 625mV, FF는 84.1%, 효율은 18.3%로 우수한 결과를 나타내었다. 반사도 측정 결과 단일반사방지막은 2.27%로 높았으나 SiNx 이중구조를 이용한 반사방지막은 1.67%로 낮은 값을 확인 하여 이중구조의 반사방지막이 반사도 저감 및 passivation 효과 향상에 도움이 되는 것을 확인할 수 있었다.

  • PDF

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

A SiGe HBT of Current Gain Modulation By using Passivation Ledge (Passivation Ledge를 이용한 SiGe HBT의 Current Gain Modulation)

  • You, Byoung-Sung;Cho, Hee-Yup;Ku, Youn-Seo;Ahn, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.771-774
    • /
    • 2003
  • Passivation Ledge's device is taken possession on one-side to the Emitter in this Paper. contact used in this paper Pt as Passivation Ledge of device to use Schottky Diode which has leitmotif, It is accomplished Current Modulation that we wish to do purpose using this device. Space Charge acts as single device which is becoming Passivation to know this phenomenon. This device becomes floating as well as Punched-through. V$_{L}$ (Voltage for Ledge) = - 0.5V ~ 0.5V variable values , PD(Partially Depleted ; Λ>0), as seeing FD(Fully Depleted ; A = 0) maximum electric current gains and Gummel Plot of I-V characteristics (V$_{L}$ = 0.1/ V$_{L}$ = -0.1 ). Becomming Degradation under more than V$_{L}$ = 0.1 , less than V$_{L}$ =-0.05 and Maximum Gain(=98.617076 A/A) value in the condition V$_{L}$ = 0.1. A Change of Modulation is electric current gains by using Schottky Diode and Extrinsic Base PN Diode of Passivation Ledge to Emitter Depletion Layer in HBT of Gummel-Poon I-V characteristics and the RF wide-band electric current gains change the Modulation of CE(Common-Emitter) amplifier description, and it had accomplished Current Gain Modulation by Ledge Bias that change in high frequency and wide bands. wide bands.s.

  • PDF

Comparison of Surface Passivation Layers on InGaN/GaN MQW LEDs

  • Yang, Hyuck-Soo;Han, Sang-Youn;Hlad, M.;Gila, B.P.;Baik, K.H.;Pearton, S.J.;Jang, Soo-Hwan;Kang, B.S.;Ren, F.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • The effect of different surface passivation films on blue or green (465-505 nm) InGaN/GaN multi-quantum well light-emitting diodes (LEDs) die were examined. $SiO_2$ or $SiN_x$ deposited by plasma enhanced chemical vapor deposition, or $Sc_2O_3$ or MgO deposited by rf plasma enhanced molecular beam epitaxy all show excellent passivation qualities. The forward current-voltage (I-V) characteristics were all independent of the passivation film used, even though the MBE-deposited films have lower interface state densities ($3-5{\times}10^{12}\;eV^{-1}\;cm^{-2}$) compared to the PECVD films (${\sim}10^{12}\;eV^{-1}\;cm^{-2}$), The reverse I-V characteristics showed more variation, hut there was no systematic difference for any of the passivation films, The results suggest that simple PECVD processes are effective for providing robust surface protection for InGaN/GaN LEDs.

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation (황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구)

  • Kim, Jun-Gyu;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

Study on Surface-defect Passivation of InP System Quantum Dots by Photochemical Method (광화학적 방법을 통한 InP계 양자점 표면결함 부동태화 연구)

  • Kim, Doyeon;Park, Hyun-Su;Cho, Hye Mi;Kim, Bum-Sung;Kim, Woo-Byoung
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.489-493
    • /
    • 2017
  • In this study, the surface passivation process for InP-based quantum dots (QDs) is investigated. Surface coating is performed with poly(methylmethacrylate) (PMMA) and thioglycolic acid. The quantum yield (QY) of a PMMA-coated sample slightly increases by approximately 1.3% relative to that of the as-synthesized InP/ZnS QDs. The QYs of the uncoated and PMMA-coated samples drastically decrease after 16 days because of the high defect state density of the InP-based QDs. PMMA does not have a significant effect on the defect passivation. Thioglycolic acid is investigated in this study for the effective surface passivation of InP-based QDs. Surface passivation with thioglycolic acid is more effective than that with the PMMA coating, and the QY increases from 1.7% to 11.3%. ZnS formed on the surface of the InP QDs and S in thioglycolic acid show strong bonding property. Additionally, the QY is further increased up to 21.0% by the photochemical reaction. Electron-hole pairs are formed by light irradiation and lead to strong bonding between the inorganic and thioglycolic acid sulfur. The surface of the InP core QDs, which does not emit light, is passivated by the irradiated light and emits green light after the photochemical reaction.