• Title/Summary/Keyword: Partitioning

Search Result 1,586, Processing Time 0.031 seconds

A space partitioning method embedded in a simulated annealing algorithm for facility layout problems with shape constraints

  • Kim, Jae-Gon;Kim, Yeong-Dae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.465-468
    • /
    • 1996
  • We deal with facility layout problems with shape constraints. A simulated annealing algorithm is developed for the problems. In the algorithm, a solution is encoded as a matrix that has information about relative locations of the facilities in the floor. A block layout is constructed by partitioning the floor into a set of rectangular blocks according to the information while satisfying areas of facilities. In this paper, three methods are suggested for the partitioning procedure and they are employed in the simulated annealing algorithm. Results of computational experiments show that the proposed algorithm performs better than existing algorithms, especially for problems with tight shape constraints.

  • PDF

Hybrid multiple component neural netwrok design and learning by efficient pattern partitioning method (효과적인 패턴분할 방법에 의한 하이브리드 다중 컴포넌트 신경망 설계 및 학습)

  • 박찬호;이현수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.70-81
    • /
    • 1997
  • In this paper, we propose HMCNN(hybrid multiple component neural networks) that enhance performance of MCNN by adapting new pattern partitioning algorithm which can cluster many input patterns efficiently. Added neural network performs similar learning procedure that of kohonen network. But it dynamically determine it's number of output neurons using algorithms that decide self-organized number of clusters and patterns in a cluster. The proposed network can effectively be applied to problems of large data as well as huge networks size. As a sresutl, proposed pattern partitioning network can enhance performance results and solve weakness of MCNN like generalization capability. In addition, we can get more fast speed by performing parallel learning than that of other supervised learning networks.

  • PDF

A Network Partitioning Using the Concept of Conection Index-Algorithm and Implementation (연결지수의 개념을 사용한 회로망분실-알고리즘 및 실시)

  • 박진섭;박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.6
    • /
    • pp.94-104
    • /
    • 1984
  • Based on a new concept of connection index of a weighted graph, a new efficient houris tic algorithm of 0(v.e) for network partitioning is presented, where v and e are the number of nodes and edges, respectively. Experimental results show that our algorithm is very efficient and yields an optimal or near optimal solution for a number of partitioning problems tested. Some applications of the proposed algorithm are suggested and its computer implementation is described in detail.

  • PDF

CPU-GPU2 Trigeneous Computing for Iterative Reconstruction in Computed Tomography

  • Oh, Chanyoung;Yi, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.294-301
    • /
    • 2016
  • In this paper, we present methods to efficiently parallelize iterative 3D image reconstruction by exploiting trigeneous devices (three different types of device) at the same time: a CPU, an integrated GPU, and a discrete GPU. We first present a technique that exploits single instruction multiple data (SIMD) architectures in GPUs. Then, we propose a performance estimation model, based on which we can easily find the optimal data partitioning on trigeneous devices. We found that the performance significantly varies by up to 6.23 times, depending on how SIMD units in GPUs are accessed. Then, by using trigeneous devices and the proposed estimation models, we achieve optimal partitioning and throughput, which corresponds to a 9.4% further improvement, compared to discrete GPU-only execution.

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Distributed Prevention Mechanism for Network Partitioning in Wireless Sensor Networks

  • Wang, Lili;Wu, Xiaobei
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.667-676
    • /
    • 2014
  • Connectivity is a crucial quality of service measure in wireless sensor networks. However, the network is always at risk of being split into several disconnected components owing to the sensor failures caused by various factors. To handle the connectivity problem, this paper introduces an in-advance mechanism to prevent network partitioning in the initial deployment phase. The approach is implemented in a distributed manner, and every node only needs to know local information of its 1-hop neighbors, which makes the approach scalable to large networks. The goal of the proposed mechanism is twofold. First, critical nodes are locally detected by the critical node detection (CND) algorithm based on the concept of maximal simplicial complex, and backups are arranged to tolerate their failures. Second, under a greedy rule, topological holes within the maximal simplicial complex as another potential risk to the network connectivity are patched step by step. Finally, we demonstrate the effectiveness of the proposed algorithm through simulation experiments.

A Study on the K-way Partition Minimizing Maxcut (최대컷값을 최소화하는 k-way 분할 연구)

  • Kim, Kyung-Sik;Lee, Chul-Dong;Yu, Young-Uk;Jhon, Chu-Shik;Hwang, Hee-Yung
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.557-560
    • /
    • 1988
  • In this paper, we present a new k-way partitioning algorithm for a graph of an electrical circuit wherein nodes and edges are regarded as cells (modules) and nets, respectively. In contrast to the previous work, our method is based upon a linearly ordered partition paradigm. We also claim that the maximum number of netcuts mostly governs the performance of k-way partitioning, thus having influence on the construction of a new cost function. In addition, our approach elaborates upon balancing the partition size. Our experiments show excellent results in comparison with previous k-way partitioning algorithms.

  • PDF

Selection of Key Radionuclides for P&T Based on Radiological Impact Assessment for the Deep Geological Disposal of Spent PWR/CANDU/DUPIC Fuels

  • Lee, Dong-Won;Chung, Chang-Hyun;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.231-240
    • /
    • 2001
  • When it is assumed that PWR, CANDU and DUPIC spent fuels are disposed of in deep geological repository, consequent annual individual doses are calculated, and it is shown that doses meet the regulatory limit. From these results, the hazardous radionuclides applicable to partitioning and transmutation are selected. These selected radionuclides such as Tc-99, Ⅰ-129, Cs-135 and Np-237 are then reviewed in terms of partitioning and transmutation. Separation of I-129, Np-237 and Tc-99 from spent fuels is considered desirable, and transmutation of these radionuclides results in remarkable hazard reduction. However, it is concluded that separation and transmutation of Cs-135 may be ineffective although it is classified into a hazardous radionuclide.

  • PDF

Linear Ordering with Incremental Merging for Circuit Netlist Partitioning (회로 결선도 분할을 위해 점진적 병합을 이용한 선형배열)

  • 성광수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.21-28
    • /
    • 1998
  • In this paper, we propose an efficient linear ordering algorithm, called LIME, for netlist partitioning. LIME incrementally merges two segments which are selected based on the proposed cost function until only one segment remains. The final resultant segment then corresponds to the linear ordering. LIME also runs extremely fast, because it exploits sparsity of netlist. Compared to the earlier work, the proposed algorithm is eight times faster in producing linear ordering and yields an average of 17% improvement for the multi-way scaled cost partitioning.

  • PDF

BILI-Hardware/Software Partition Heuristic (BILI-하드웨어/소프트웨어 분할 휴리스틱)

  • Oh Hyun-Ok;Ha, Soon-Hoi
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.66-77
    • /
    • 2000
  • This paper presents a fast partitioning heuristic for hardware/software codesign called Best Imaginary Level-Iterative(BILI) partitioning which iteratively applies BIL heterogeneous multiprocessor scheduling heuristic to minimize the cost within the given time constraint. The proposed algorithm solves the partitioning problem with the implementation bin selection problem as well as architectures with multiple software modules. It costs about 15% less than the GCLP and at most about 5% more than the optimal solution obtained by the Integer Linear Programming(ILP) algorithm.

  • PDF