A Space Partitioning Method Embedded in a Simulated Annealing Algorithm
for Facility Layout Problems with Shape Constraints

Jae-Gon Kim and Yeong-Dae Kim

Department of Industrial Engineering
KAIST, Yusong-gu, Daejon 305-701, Korea

Abstract

We deal with facility layout problems with
shape constraints. A simulated annealing algorithm
is developed for the problems. In the algorithm, a
solution is encoded as a matrix that has information
about relative locations of the facilities in the floor.
A block layout is constructed by partitioning the
floor into a set of rectangular blocks according to the
information while satisfying areas of facilities. In
this paper, three methods are suggested for the
partitioning procedure and they are employed in the
simulated annealing algorithm. Results of
computational experiments show that the proposed
algorithm performs better than existing algorithms,
especially for problems with tight shape constraints.

1. Introduction

Generally, the problem of designing a physical
layout of facilities with the objective of minimizing
the total material handling costs is called the facility
layout problem.

A major drawback of most of existing
algorithms is that facilities with irregular shapes
may appear in the final layout. This is because
shapes of the facilities are not considered and layouts
are developed on a floor which is divided into
squares or rectangles with a unit area by a grid. A
comprehensive survey of various algorithms for
facility layout problems can be found in Kusiak and
Heragu (1987). Recent efforts are placed on
development of layout on a so-called continual
plane, a floor which is not divided into unit areas by
a grid (Tam 1992, Tate 1995).

This paper focuses on the facility layout
problems with shape constraints. In this study, the
block layout (floor plan) is constructed on a
continual plane, and hence the facilities may have
real values for the lengths and widths. Facilities are
modeled as rectangles in the block layout and the
shape constraint for each facility is represented by
the aspect ratio, that is, the aspect ratio of each
block must be within a given range. Here, the aspect
ratio is defined as the ratio of the maximum of the

length and the width of the facility to the minimum
of them.

2. Representation of the Solutions

In the suggested algorithm, a solution is
represented by an rxc matrix M, which has
information about relative locations of the facilities
in the floor. The elements of the matrix specifies the
indices of the facilities. The number of elements,
rc, is greater than or equal to the number of
facilities, N. When rc¢ is strictly greater than N,
re—- N dummy facilities are introduced. Dummy
facilities have neither area nor material flow from/to
other facilities and are indexed zero. Let my; be the

value of the element at row i and column j in M.
Then, by the encoding scheme suggested here,
facility m; is to be placed to the right of facility

i
to the left of facility m, below facility

n;

i-1,7 +1,j°

m; ;_y, and above facility m; ;,, in the floor. In this

manner, relative locations of all facilities in the floor
are determined by M. In this paper, M is called the
location matrix.

To represent a solution with M, » and ¢ must
be determined. Let L and # be the length and the
width of the floor, respectively. In the suggested
scheme, r and ¢ are determined with

r=[VNL/W | + k, and c=[JNW/L]| + k,

where [a]| denotes the smallest integer which is

greater than or equal to @, and k%, and k. are
parameters with non-negative integer values, If k,
and k, are set to zero, r and ¢ are determined in such
a way that their ratio is proportional to that of L and
W. As k. and k. become greater, more dummy
facilities are introduced. These two parameters, k,
and k. are determined by another parameter k with a
positive integer value as follows.

If | [\/NL/W -l—\/NL/W ‘ is less than

‘ [VNI77L | -JNW 7T ‘ let k, = (k+1)/2 and k, =
(k=1)/2,

—465—

otherwise, let k, = (k—1)/2 and k. = (k+1)/2.

As k increases, k, and k. become larger and as a
result, the number of alternatives for the block
layouts increases. In general, k need not be too large
unless there are extremely small or large facilities or
extremely long or wide facilities.

3. Space Partitioning Method

In this section, we suggest a method called the
space partitioning method (SPM), which decodes a
location matrix into a block layout. In the suggested
method, the location matrix is decomposed
recursively and then the floor is partitioned
according to the results of the decomposition of the
location matrix. The method partitions the floor into
rectangular blocks using guillotine cuts.

In the suggested method, decomposing the
location matrix into two submatrices corresponds to
partitioning the floor into two blocks. If the location
matrix is cut horizontally (vertically) and
decomposed into an upper (left) submatrix and a
lower (right) submatrix, the floor is partitioned into
an upper (left) block and a lower (right) block. The
floor is partitioned by a guillotine cut in such a way
that the area of each block is equal to the sum of the
areas of the facilities of which the indexes are
included in the submatrix corresponding to the
block.

If the above procedure is recursively applied to
the submatrices and partitioned blocks, the location
matrix is decomposed down to rc¢ 1x1 matrices (or
elements), and the floor can be partitioned into rc
blocks. (Once the location matrix is decomposed
down to element levels, a complete layout can be
constructed using SPM.) Note that blocks
corresponding to rc— N elements with O values
have no area and hence they do not appear in the
layout.

Heuristic methods are used for decomposing a
location matrix. A layout generated by SPM satisfies
area constraints for all facilities but does not always
satisfy shape constraints. Because of this, the
heuristic methods have a surrogate objective of
minimizing the number of facilities of which the
shape constraints are violated in the final layout or
minimizing the probability that the shape constraints
are not satisfied. In this study, three methods are
developed.

Method A

In this method, two alternatives are considered
for decomposition. The first alternative is to
decompose the location matrix into row vectors and
then decompose them into elements. The second
alternative, on the other hand, is to decompose the

location matrix into column vectors and then
decompose them into elements. Note that once the
location matrix is decomposed into row or column
vectors, a unique final layout is obtained by SPM and
one can easily find the number of facilities of which
the shape constraints are violated. The alternative
selected for the final layout is the one with the
smaller number of such facilities.

This method is illustrated with an example
problem with N =9, L = 8 and W = 10. Areas and
ranges of aspect ratios of the facilities are given in
Table 1 and Table 2. Figure 1 shows the two
alternatives for decomposition and their
corresponding layouts. The facilities marked with
asterisks in the figure are those of which the shape
constraints are violated. In this example, alternative
(a) is selected since it has a smaller number of
unsatisfied shape constraints.

Table 1. Areas of facilities in the example problem
Facility 1 2 3 4 5 6 7 8 9

Area 8 12 5 16 7 9 6 7 10
Table 2. Aspect ratios of facilities in the example
problem

Facility

1 2 3 4 5 6 7 8 9
Lowerbound 1.0 1.7 1.0 1.6 1.0 1.0 1.0 1.3 1.6
Upperbound 1.4 20 1.52.1 1315131522

jt——— 10 ———
1l 2] o] 3] SEERE T
4] 5|7 0| - 4 51718
9] ¢ o8 9| 6 |8 {
Alternative a
1] 20 5] 1 s
4 —5_ —7— T > 4 . 7__
S
Alternative b
Figure 1. Method A
Mecthod B

In this method, the location matrix is
decomposed into two submatrices one of which is a
column or a row vector. There are four alternatives
for such decomposition: to select the first row, the
last row, the first column and the last column of the
matrix as one of two submatrices. For each
alternative, an upper bound on the number of

—466—

facilities of which the shape constraints are violated
can be obtained by applying Method A to the
submatrices. The method selects the one which
gives the minimum upper bound among these four
alternatives. This procedure is applied to the
submatrices until the location matrix is decomposed
down to row or column vectors. Once the location
matrix is decomposed into row or column vectors, a
complete block layout can be easily obtained.

Figure 2 shows how Method B is applied to the
example given above. In the resulting layout, there
are two facilities of which the shape constraints are
not satisfied.

1] 2] 0] 3 1] 2 3
als]7]0| = g | S|
9 6] o] 8 e | 618

Figure 2. Method B

Method C

In this method, every possible alternative for
guillotine cuts is considered for decomposition. For
example, if there are » rows and ¢ columns in the
matrix, there are r+c-2 ways to decompose the
matrix into two submatrices. The method selects the
one which gives the minimum upper bound on the
number of facilities of which the shape constraints
are violated. The upper bound is obtained with the
same method as in Method B. This procedure is
recursively applied to submatrices resulted from such
decomposition until the location matrix is fully
decomposed down to row or column vectors.

The previous example problem is solved by this
method as well, and the result is given in Figure 3.
In this example problem, this method gives a feasible
block layout in which shape constraints of all
facilities are satisfied.

1]2]o0]3 Ll 2 |3
a|ls|7]0| - 4 517
9|6] o0]s 9o | 6 |8

Figure 3. Method C

4. The Simulated Annealing Algorithm

In this study, an SA algorithm is used to find a
location matrix which gives the best layout. For an
implementation of an SA algorithm on the problem
considered here, we determine various parameters or
methods as follows.

Solution space
As explained earlier, a solution is represented

by an rxc matrix. Note that only N of rc¢ elements
of the matrix are assigned to N facilities and the rests
are allocated to dummy facilities. A parameter (k) is
used to control the size of the matrix or equivalently,
the size of solution space (see section 3).

Objective function

In the suggested SA algorithm, the shape
constraints are converted into a penalty so that
feasible solutions are obtained more easily in the
search procedure. That is, the objective function
value of a solution in the SA algorithm is computed
with 7j-(1+aNy), where 7, is the solution value

(total travel distance) obtained from the given layout,
N; is the number of facilities of which the shape
constraints are not satisfied and a is a penalty
weight for N, After a series of preliminary
experiments, this weight is set 0.3 in the suggested
SA algorithm.

Neighborhood generation

A neighborhood solution of the current solution
is generated by exchanging two elements in the
location matrix corresponding to the current solution.

Cooling schedule

In the suggested algorithm, the initial
temperature 7, is chosen in such a way that the
fraction of accepted uphill moves in a trial run of the
annealing process is approximately F,. For the
algorithm, N moves are made and the average
increase in the objective function value A s
calculated with uphill moves only and then 7 is
obtained from the equation, exp(—A / T3) =Fo. The

epoch length specifies the number of moves made
with the same temperature. In the suggested

algorithm, the epoch length is set to be / (;C) , where

! is a parameter to be determined. Also, the
temperature is decreased in such a way that the
temperature at the k-th epoch is given by T = v 7)1,
where y is a parameter, called the cooling ratio, with
a value less than 1.

Stopping condition

As the criterion for termination, the suggested
algorithm adopts the method given by Johnson et al.
(1989). The method maintains a counter that is
incremented by one when an epoch is completed
without any improvement in the solution value and
that is reset to 0 when a new incumbent solution is
found. The SA algorithm is terminated when the
counter reaches a given limit. After a series of tests
on a number of problems, 3 is selected for the limit
in the suggested algorithm.

—467—

5. Computational Experiments

The solution encoding scheme with three
methods suggested for decomposition of the location
matrix was implemented in the SA algorithms.
These SA algorithms are denoted by SA-A, SA-B
and SA-C according to the methods. They are
compared with a algorithm of Tate and Smith (1995)
denoted by T&S that is known to give better
solutions than others. The suggested SA algorithms
were coded in C language and all the algorithms
included in the tests were run on a personal
computer with a Pentium processor.

In general, layout problems with shape
constraints can be characterized by the number of
facilities, tightness of shape constraints, and variance
of areas of the facilities, among others. We
generated 10 problems for each of all combinations
of four levels for the number of facilities (10, 15, 20,
and 30), two levels for the tightness (loose and tight)
and two levels for the variance (small and large).

After a series of experiments, it was found that
the SA algorithms with k = 1, Fy = 0.65, y = 0.835
and / = 2 gave better solutions than others without
requiring much longer computation time, so they
were selected for the algorithms. Parameters for
T&S were set as in Tate and Smith (1995) except for
the stopping condition. As the stopping criterion for
T&S, we used the number of iterations for which the
best solution has not been improved. When the
number reaches a given limit, Cy, the algorithm is
terminated. The limit Cy was set to be equal to
1600N 2 in T&S.

Tables 3 and 4 show results of the tests on the
three SA algorithms and T&S. In Table 3, the
relative deviation percentage is defined as 100(f, -
Fg)/Fg for algorithm a, where F, and Fp are the
solutions from algorithm @ and from the algorithm
which gave the best solution for the problem,
respectively. Problems for which an algorithm did
not find a feasible solution are excluded from the
calculation of this percentage for the algorithm.

Table 3. Performance of the algorithms

T&S SA-A SA-B SA-C
NFS 95 105 148 158
NBS 1 5 59 105

RDP 9.12 6.36 1.61 0.84

NFS: number of problems for which each algorithm found
a feasible solution

NBS: number of problems for which each algorithm found
the best solution

RDP: relative deviation percentage

Table 4. Average CPU time (in seconds) for the

algorithms
N T&S SA-A SA-B SA-C
10 33.42 12.49 43.95 56.13
15 127.62 41.85 158.71 238.59
20 348.87 8323 371.01 651.10
30 1548.86 398.87 1710.80 2872.67

The suggested SA algorithms outperformed the
existing algorithm. SA-A slightly outperformed
T&S in the solution quality and the computation
time, and SA-B gave much better solutions than
T&S in almost the same computation time. SA-C
gave the best solutions although it required the
longest computation time. Since SA-C employs a
solution decoding scheme which checks a large
number of alternatives for the block layout, it can
find feasible layouts more easily.

6. Concluding Remarks

In this paper, a simulated annealing algorithm
was applied to the facility layout problem with shape
constraints. A new layout representation scheme
was developed for solution encoding. We suggested
the space partitioning method (SPM) to convert the
encoded solution into a layout. Results of
comparisons with existing algorithms showed that
the suggested SA algorithms outperformed the
existing ones, especially for problems with tight
constraints.

This research can be extended in several ways.
For example, other methods can be used to
determine the size of the location matrix and/or to
decompose the location matrix. Also, other secarch
methods such as tabu search and genetic algorithms
can be applied to the problems even with the same
encoding/decoding scheme.

References

Johnson, D., Aragon, C., McGoech, L. and Schevon,
C. (1989) Optimization by simulated annealing:
an experimental evaluation; part I, graph
partitioning. Operations research, 37(6), 865-892

Kusiak, A. and Heragu, S.S. (1987) The facility
layout problem. European Journal of Operational
Research, 29, 229-251.

Tam, K.Y. (1992) A simulated annealing algorithm
for allocating space to manufacturing cells.
International Journal Production Research, 30(1),
63-87.

Tate, D.M. and Smith, E.A. (1995) Unequal-area
facility by genetic search. JJE Transactions, 27(4),
465-472,

—468—

