
IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016
http://dx.doi.org/10.5573/IEIESPC.2016.5.4.294 294

IEIE Transactions on Smart Processing and Computing

CPU-GPU2 Trigeneous Computing for Iterative
Reconstruction in Computed Tomography

Chanyoung Oh and Youngmin Yi

School of Electrical and Computer Engineering, University of Seoul / Seoul, South Korea {alspace11, ymyi}@uos.ac.kr

* Corresponding Author: Youngmin Yi

Received June 25, 2016; Revised August 3, 2016; Accepted August 5, 2016; Published August 30, 2016

* Regular Paper

Abstract: In this paper, we present methods to efficiently parallelize iterative 3D image
reconstruction by exploiting trigeneous devices (three different types of device) at the same time: a
CPU, an integrated GPU, and a discrete GPU. We first present a technique that exploits single
instruction multiple data (SIMD) architectures in GPUs. Then, we propose a performance
estimation model, based on which we can easily find the optimal data partitioning on trigeneous
devices. We found that the performance significantly varies by up to 6.23 times, depending on how
SIMD units in GPUs are accessed. Then, by using trigeneous devices and the proposed estimation
models, we achieve optimal partitioning and throughput, which corresponds to a 9.4% further
improvement, compared to discrete GPU-only execution.

Keywords: Heterogeneous computing, Data partitioning, Image reconstruction, Computed tomography

1. Introduction

Due to severe power constraints, heterogeneous
computing has become mainstream, and specialized
devices such as graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs) are integrated
into a processor to achieve maximum performance with a
limited power budget. In this context, CPU-GPU
heterogeneous systems have become prevalent across all
computing platforms, from embedded systems to servers.
However, it is crucial to obtain optimal partitioning of an
application in order to fully utilize heterogeneous systems.
A lot of research has been conducted to find optimal
partitioning and mapping in such systems [1, 2]. Lee et al.
proposed a performance estimation model from which the
optimal workload distribution of a feature extraction
application can be obtained for CPU-GPU heterogeneous
platforms [3]. Our previous work presents efficient
mapping of a face detection application that fully exploits
both the CPU and the GPU in the NVIDIA Tegra K1 SoC
[4].

These days, we can easily find not just CPU-GPU
heterogeneous systems but also trigeneous systems in
which the three different types of device exist. The term
trigeneous computing was first introduced by Rethinagiri
et al. [5], where energy-efficient platforms composed of a

CPU, a GPU, and an FPGA were proposed for embedded
platforms as well as server platforms. The three devices
were used for a single application, although all three
devices were not utilized at the same time.

In this paper, we extend the performance model of Lee
et al. [3] so as to find the optimal distribution for the
trigeneous platform, and we confirm the viability of the
proposed model with a trigeneous platform (consisting of a
multicore CPU, an integrated GPU, and a discrete GPU)
for an iterative image-reconstruction application.

On the other hand, image reconstruction is used in
computed tomography (CT), which aims to reconstruct a
3D volume image inside an object (e.g., the human body)
with a number of X-ray images. Since modern X-ray
systems use cone-beam geometry, which produces a 2D
image in a single acquisition [6], a 3D volume image
composed of 3D slice images is reconstructed from a
number of 2D images along the angles shown in Fig. 1.
Therefore, it requires huge computational power.

Moreover, recent methods such as the simultaneous
algebraic reconstruction technique (SART) and maximum
likelihood-expectation maximization (ML-EM) adopt
iterative models [7, 8]. These iterative algorithms repeat
backprojection and forward projection, updating the
projected images based on the measured images with every
iteration. Even though these iterative algorithms require

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

295

much more computation than the analytic algorithms [6],
their importance and the demand for them in the fields are
dramatically increasing since the iterative algorithms can
reconstruct a high-quality 3D image with the same, or a
smaller, number of X-ray images. This implies that the X-
ray dose for a patient can be reduced, and scanning time
can also be shortened [9].

To meet the huge computational demands of iterative
image reconstruction, many researchers have tried to take
advantage of hardware accelerators for image
reconstruction: FPGAs were used [9, 10], and GPUs [11-
13].

On the other hand, it is necessary to utilize not only
discrete GPU but also other units in the system to get the
most out of the underlying platforms. Most modern
processors already include an integrated GPU on the same
chip, which is also programmable, like the discrete GPU.
Compared to the conventional CPU-GPU heterogeneous
system, a trigeneous system that consists of an integrated
GPU, a discrete GPU, and a CPU can improve overall
performance without any additional cost.

In this paper, we first present how much performance
improvement could be achieved by exploiting the
characteristics of the single instruction multiple data
(SIMD)-based architecture in GPUs for iterative image
reconstruction. Then, we propose a performance
estimation model that finds optimal partitioning for this
trigeneous platform (what we call the CPU-GPU2
trigeneous platform) to achieve the maximum throughput,
with which iterative image reconstruction can be done in a
timely fashion.

The rest of the paper is organized as follows. In Section
2, the iterative image reconstruction algorithm called
SART will be explained, and the acceleration techniques
for image reconstruction on GPUs will be explained in
Section 3. Then, the proposed performance model for
trigeneous platforms, as well as efficient mapping of
SART on the platform, will be explained in Section 4.
Section 5 shows the experimental results, which is
followed by a conclusion in Section 6.

2. Simultaneous algebraic reconstruction
technique

Fig. 2 describes an overview of general iterative image
reconstruction. First, forward projection is performed to
generate estimated projection images with the initial 3D
volume image. The output of forward projection is
compared with the measured input X-ray images, building
the error map. Then, the backprojection operator
reconstructs a temporary volume image using the error
map. Finally, we correct the output volume image based on
the reconstructed error map. This procedure is repeated
until the errors between the estimated projection images
and the input X-ray images fall below a specific threshold.

Most iterative algorithms have the same structure
described above, and share the equivalent forward
projection and backprojection modules. The difference lies
in how they update the volume at each iteration. For SART,
the value of every voxel i, vi, is updated at the kth iteration
using the following equation:

 ()

1

1 1

 λ

N k
j ij ii

ij Nj
ijk ik

i i
ijj

p a v
a

a
v v

a

=

+ =

⎡ ⎤−
⎢ ⎥
⎢ ⎥⎣ ⎦= +

∑∑
∑

∑
 (1)

where pj is the value of pixel j, aij represents the geometric
information of the X-ray system, and λ is a relaxation
factor introduced for noise control. Eq. (1) describes the

overall procedure in Fig. 2. First, the term
1

N
k

ij i
i

a v
=
∑

corresponds to forward projection, which calculates line
integrals from the X-ray source to the detector. Then, a
comparison is performed by subtracting the calculated line
integrals from the measured input X-ray images denoted as

pj. The denominator
1

N

ij
i

a
=
∑ in the numerator is for

normalization. The differences are summed for all j,
normalized, and scaled by λ before being distributed to
voxels. These correspond to backprojection and correction.

Fig. 1. The scheme of 3D cone-beam CT [9].

Input: measured projection (X-ray) images P
Output: reconstructed volume image V

1:

2:

3:

4:

5:

6:

7:

Initialize V
Until convergence of E do

E = Forward projection of V

E’ = Comparison of E based on P

V’ = Backprojection of E’

V = Correction of previous result V

using V’
End

Fig. 2. Iterative image reconstruction.

Oh et al.: CPU-GPU2 Trigeneous Computing for Iterative Reconstruction in Computed Tomography

296

3. Acceleration on SIMD Devices

We will now discuss the method to exploit GPUs,
which takes advantage of the massive number of SIMD
units.

3.1 GPU and OpenCL
GPUs were initially designed to efficiently process

graphics applications. Since those applications typically
require the processing of a tremendous amount of
polygons, GPUs evolved to have highly parallel structures.
To provide GPUs for general-purpose computing, NVIDIA
introduced a framework called the Compute Unified
Device Architecture (CUDA). In this paper, we adopt
Open Computing Language (OpenCL), which is a similar
parallel computing framework, not only for specific GPUs
but also for a wide range of heterogeneous devices. These
days, even FPGAs, as well as most GPUs and CPUs,
support OpenCL. It employs a hierarchical programming
model to leverage the highly parallel SIMD architecture of
devices. The smallest execution unit is called a work-item,
which can be perceived as a thread of conventional
multicore processing. The work-group represents a group
of threads, and every work-item in a work-group has its
own program counter running concurrently as single
instruction multiple threads (SIMTs), which is an
extension of SIMD. The state-of-the-art GPUs have
approximately 3000 SIMD units on a single chip. Thus, a
GPU kernel can execute thousands of threads at once.
Although GPUs provide high memory bandwidth, because
the number of SIMD units is massive, memory contention
often occurs, becoming a major performance bottleneck.

3.2 Acceleration of SART
Since the image reconstruction algorithm deals with a

massive number of pixels and voxels, it is well-matched to
the GPU architecture with thousands of SIMD units. By
simply mapping each pixel or voxel into a work-item, one
can achieve performance improvement a dozen times over
the sequential CPU implementation. However, we should
consider more steps to maximize performance. Generally,
a GPU is more suitable for compute-intensive tasks, since
each core has a tiny-sized cache, and frequent global
memory access would degrade performance. Thus, we
have to map the pixels or voxels more carefully to mitigate
this problem.

The SART algorithm can be separated into four parts:
forward projection, comparison, backprojection, and
correction. Comparison and correction are computed on
the CPU, since these are memory-intensive, rather than
compute-intensive. Backprojection and forward projection
conduct almost the same job, which consists of geometry
computation and interpolation. In backprojection, the
straightforward implementation suffices, and no further
optimization is required. In contrast, forward projection
requires memory access optimization to better utilize
underlying hardware architectures. First of all, forward
projection cannot be computed in a single kernel since it
must perform two interpolations with different dimensions,

and OpenCL does not allow a thread to access the data
written by another thread that resides outside its work-
group. Although OpenCL supports data sharing among
work-items through local memory, it is only allowed
access to the work-items in the same work-group. Since
the first interpolation produces totally new volume data,
the second interpolation cannot access its entire input
unless the kernel utilizes only a single work-group, which
would cause a significant performance decrease. Therefore,
we divide forward projection into two separate kernels:
one for the rotation using β as defined in Fig. 1, and the
other for the projection. Then, the threads in the projection
kernel can access the output of the rotation kernel, if the
permutation of x-axis and z-axis in the volume is carried
out between two kernels. The permutation can be done
implicitly in one of two ways:

A. writing the result of the rotation kernel in the
permuted order

B. reading the input as the permuted order in the
projection kernel

In the former, threads write the result to global memory
along the z-axis. However, GPU memory and threads are
aligned along the x-axis. Thus, the consecutive voxels
along the z-axis, such as (x, y, z) and (x, y, z+1), are not
consecutive in memory but are located far from each other.
If the memory locations to be accessed are consecutive, or
within a small stride, they are grouped into a single
transaction in a GPU in order to amortize the high cost of
global memory access. Because this is not the case with
approach A, it suffers from low memory bandwidth. In
contrast, approach B can achieve much higher memory
bandwidth, since the threads in the rotation kernel write
the result to global memory along the x-axis. Although the
threads in the projection kernel now have to read global
memory along the z-axis, as the range is limited in this
interpolation, many threads read the same global memory
locations, resulting in higher bandwidth.

Figs. 3 and 4 illustrate how memory access patterns can
affect performance. Suppose that there are six threads in a

Fig. 3. Memory access pattern which is not coalesced.

Fig. 4. Memory access pattern which is coalesced.

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

297

block, each of which accesses global memory to read two
data denoted with their respective thread id (tid). The red
round rectangle indicates that, in this example, up to eight
accesses can be grouped into a single transaction by the
SIMD architecture if they are consecutive along the x-axis.
In Fig. 3, 12 transactions are required to read the total of
12 values, since they are stored along the y-axis. Note that
the yellow box and blue box cannot be accessed in the
same transaction, since the accesses are separate
instructions from the same thread: the blue one is accessed
after the yellow one. In Fig. 4, however, the threads in a
block access consecutive memory locations along the x-
axis, allowing access from each thread to be grouped in
one transaction. It requires only two transactions to read
the same amount of data, which is only one-sixth of the
amount in approach A.

4. SART on Trigeneous Platforms

We will now discuss the method to implement iterative
image reconstruction with trigeneous devices and how to
distribute the workload efficiently. First, we extend the
performance estimation model from Lee et al. [3] to a
system that has three different types of device. Then, we
present the mapping algorithm for iterative image
reconstruction using the estimated parameters.

4.1 Performance Estimation Model for
Trigeneous Devices

Lee et al. [3] determined the optimal workload
distribution using linear interpolation based on a pre-
experiment test. In this paper, we extend the model to the
CPU-GPU2 trigeneous computing system. Since the
workload for each task in image reconstruction is
determined by the number of assigned projection images
and increases linearly, we also adopt linear regression to
estimate the execution time of the tasks. In contrast to Lee
et al.’s model [3], we refine the regression by analyzing
the characteristics of devices.

In iterative image reconstruction, total workload WT is
the total number of projection images, which is a fixed
value from the given X-ray system, and can be represented
as follows:

 T DGPU CPU IGPUW W W W= + + (2)

where WCPU, WIGPU, and WDGPU are the workloads for the
CPU, for the integrated GPU, and for the discrete GPU,
respectively.

It is well known that each processing element (i.e.,
device) in the system should have the same amount of
execution time to maximize the overall performance when
we parallelize a single task in a data-parallel fashion.
Therefore, the execution time of a single task for all
devices with optimal workload distribution ratio OWdevice
can be described as shown in Eq. (3).

 DGPU CPU IGPUOW OW OWα β γ δ ε ζ+ = + = + (3)

The execution times for each device are represented in
Eqs. (4)-(6) in linear form, since they vary proportionally
to the amount of the given workload, in general. Eqs. (4)
and (6) are for a discrete GPU and an integrated GPU,
respectively, and we will use the terms DGPU and IGPU
from now on for convenience.

 () DGPU DGPU DGPUT W Wα β= + (4)

 () CPU CPU CPUT W Wγ δ= + (5)

 () IGPU IGPU IGPUT W Wε ζ= + (6)

The parameters α to ζ are derived from the data

obtained in advance: we should measure the execution
time for each device several times with the various
workload settings. In contrast to Lee et al. [3], who used
linear interpolation to obtain the parameters, we use linear
regression, since simply interpolating two points may
cause overfitting.

When linear regression is used, first, take into account
whether or not the measured data are actually linear.
Although the measured points are generally in a linear
shape, some intervals can show different slopes, forming a
nonlinear shape, which can occur due to the characteristics
of the device. For example, Fig. 5 shows the measured
execution time and the estimated time as the number of
assigned images increases on a DGPU. It shows an almost
linear shape, but the slope at the beginning is nearly
horizontal, which implies that the increase in workload
does not lead to the increase in the execution time until it
reaches a certain point; a DGPU usually has a huge
number of processing cores and requires enough workload
to fully utilize the cores. Until it is fully utilized, even if
the workload increases, the tasks are executed
simultaneously without increasing execution time. If this is
not considered, the linear regression would result in a line
with a larger error, as shown in Fig. 5(a). Then, the model
could be refined so as to have multiple slopes, but it would
require nonlinear regression. Thus, we chose to exclude
that interval, since the points in the interval are rarely
chosen as the optimal partitioning for the DGPU. Fig. 5(b)
results in a line with less of an error under this
consideration.

Once the parameters are set by linear regression, we

Fig. 5. (a) Improper regression, (b) proper regression
considering device characteristics, when the x-axis is
the workload and the y-axis is execution time (in
seconds).

Oh et al.: CPU-GPU2 Trigeneous Computing for Iterative Reconstruction in Computed Tomography

298

can decide the optimal workload distribution ratio by
simultaneously solving Eqs. (2) and (3) as follows:

T
CPU

WOW αε αδ αζ βε δε
αγ αε γε
− + + −

=
+ +

 (7)

T
IGPU

WOW αγ αδ αζ βγ γζ
αγ αε γε
+ − + −

=
+ +

 (8)

T
DGPU

WOW γε βγ βε γζ δε
αγ αε γε
− − + +

=
+ +

 (9)

4.2 Task Mapping and Implementation for
Trigeneous Devices

In Section 4.1, we derived the optimal workload
distribution for trigeneous devices. However, there are
some issues in implementing iterative image
reconstruction. First of all, the results obtained with Eqs.
(7)-(9) are floating point values. However, the workload
for each device in image reconstruction is an integer value,
since the workload is the projection image. The naïve way
to determine an integer value is rounding off the obtained
floating point value, which could, however, result in non-
optimal performance. Therefore, we must determine the
integer values carefully by taking into account the resultant
execution time of each device, as shown in Fig. 6. The
procedure first obtains the floor of the float value
calculated using the equations (lines 1-2). Then, it
distributes the remaining workload in a greedy fashion,
finding a device with the minimal execution time when
one more image is assigned to it (lines 3-6).

Fig. 6 also shows the method to determine whether to
parallelize a task or not (lines 7-10). Some tasks, such as
comparison and correction, show better performance with
single-threaded execution on a CPU, compared to
parallelized execution over the three devices, since these
tasks are highly memory-intensive with little computation
for the processing cores, as mentioned in Section 3.2.
Since the computational complexity of the iterative image
reconstruction application is decided by the given X-ray

system and does not vary at runtime, the parallelization
can be determined with pre-experiment data. Fig. 7
illustrates an example of trigeneous execution for an
iterative image reconstruction application based on Fig. 6.

Although the IGPU and the DGPU are idle while the
CPU executes comparison and correction, the mapping and
partitioning depicted in Fig. 7 is optimal. It is not only
SART that has loop-carried dependency, but each task in
SART also requires merged results from the previous task.
Due to this, synchronizations between tasks are inevitable
and make it impossible to execute tasks in parallel in a
pipelined fashion. Thus, the devices can exploit only the
data-parallelism by executing a task simultaneously with
the optimal data partitioning for each device. With this
inherent constraint, comparison and correction should be
executed either in a data-parallel fashion or sequentially.
And, it is more efficient for those tasks to run on a CPU,
since the overhead for communication and synchronization
is larger than the reduced execution time via data-parallel
execution.

5. Experiments

In the experiments, we reconstruct a 128x128x128
volume image from 210 images at 256x200 using synthetic
projection images [14]. The specifications of the three
different devices that we used for iterative image

Input: parameter table P
Output: The optimal workload for K devices

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

Calculate W(K) with given P according to

Eqs. (7) - (9)

Floor W(K)
While there exists workload to distribute
do

Find device k which has the minimal

execution time with W(k)+1 workload

Increment W(k)
End while
If estimated time with W(K) exceeds

single-threaded execution time then
Return Execute-on-Host

Else
Return W(K)

Fig. 6. Workload partitioning for each task.
Fig. 7. An example of trigeneous computing for
iterative image reconstruction.

Table 1. Platform specification.

Types Devices Specs

CPU Intel Core i7-4770 3.4 GHz, 8 MB Cache
8 Compute Units (4 Cores)

IGPU Intel HD 4600 350 MHz up to 1.2GHz
20 Compute Units

DGPU NVIDIA GTX 960
1,127 MHz, 2 GB Memory

8 Compute Units
(1,024 Cores)

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

299

reconstruction are described in Table 1.
Table 2 shows the execution time of our SART

implementations. Approach A and B, explained in Section
3.2, correspond to those in Table 2. Note that only the
GPU kernel and memory copy time are shown, since the
execution time of the functions that run on a CPU (such as
update) are negligible. The rotation kernel in Approach B
is 6.23 times faster than that of Approach A thanks to the
efficient memory accesses, which result in 2.21 times
speedup in total execution time on the GPU. The following
experiments were conducted with Approach B.

We profiled each task to obtain pre-experiment data,
which are used for the proposed performance estimation
model and to distribute the workload. Fig. 8 shows the
profiling information for forward projection. Note that we
plotted only a part of the data points out of the entire
dataset. Fig. 8 shows that the DGPU outperforms the CPU
and IGPU by up to 9.10 times and 6.00 times respectively.
The severe imbalance in the computational power of the
three devices makes it hard to improve overall
performance; additional gain with the IGPU and the CPU,
compared to DGPU-only execution, can be small if the
DGPU is too powerful. However, the recent trends show
that the performance of an IGPU is becoming higher.
Moreover, the proposed model would be used for other
trigeneous platforms.

Table 3 shows the parameters that are derived from the
proposed performance estimation model with the profiling
data, and Fig. 9 shows the estimated execution times for
tasks using the model. As mentioned in Section 4, only
forward projection and backprojection are parallelized,
since the other tasks are too small to be distributed
efficiently across the three devices. With the parameters in
Table 3 and from Fig. 6, optimal partitioning was

determined to be (169, 17, 25) for forward projection, and
(149, 20, 42) for backprojection, where x, y, and z in
notation (x, y, z) represent the number of assigned
projection images (i.e., workload) for the DGPU, CPU,
and IGPU, respectively. As shown in Fig. 9, the proposed
model estimates execution time accurately with an
acceptable level of error: 1.19% for forward projection and
5.96% for backprojection.

This optimal partitioning of forward projection and
backprojection achieved performance enhancement of
18.70% and 11.12%, respectively, compared to DGPU-
only execution. Note that performance enhancement would
vary depending on the specific devices in the system.

Fig. 10 shows the end-to-end execution time of the
iterative image reconstruction application with different
devices. The proposed trigeneous execution with optimal
partitioning improves performance by 9.49%, compared to
DGPU-only execution, which corresponds to 81.91 times
speedup, compared to the sequential application. Note that
CPU+DGPU hybrid execution does not improve much,

Table 2. Average execution time for a single iteration of
the proposed image reconstruction on a GTX960.

Kernel Function Approach A
(ms)

Approach B
(ms)

Backprojection 168.70 175.84
Projection_rotation 899.65 144.49

Projection_projection 295.68 297.07
Total 1364.03 617.40

Fig. 8. Execution time of forward projection over
varying workload size for each device.

Table 3. Parameters of the performance estimation
model for trigeneous computing in iterative image
reconstruction.

Forward projection
α β γ δ ε ζ

0.0020 0.0061 0.0180 0.0209 0.0118 0.0428
Backprojection

α β γ δ ε ζ

0.0007 0.0533 0.0063 0.0279 0.0032 0.0178

Fig. 9. Performance comparison between estimated
and measured results for backprojection and forward
projection.

Fig. 10. Comparison of execution time and
corresponding speedup for each device and the
proposed trigeneous computing.

Oh et al.: CPU-GPU2 Trigeneous Computing for Iterative Reconstruction in Computed Tomography

300

compared to the process of Lee et al. [3]. This is because
iterative image reconstruction is a compute-bound
application with relatively negligible data copy time,
which is well-suited to the DGPU and tends to assign
almost all workload to the DGPU. This results in little
improvement, even if a CPU is utilized at the same time.

6. Conclusion

As heterogeneous computing has become prevalent
these days, to efficiently exploit heterogeneous devices
simultaneously has been of keen interest to many
researchers. In this paper, we presented an efficient SART
implementation using trigeneous devices: a CPU, a
discrete GPU, and an integrated GPU. We first presented
how SART can be accelerated efficiently using GPUs by
considering SIMD architectures. Then, we proposed a
performance estimation model and a mapping algorithm
for optimal data partitioning on trigeneous devices to
further increase the throughput of SART. By considering
the memory access pattern, the execution time of SART on
a GPU was reduced by 6.23 times, compared to a naïve
GPU implementation. By utilizing a trigeneous device
with the proposed estimation model, we further improved
throughput by 9.4%. To the best of our knowledge, this is
the first paper that deals with CPU-GPU2 trigeneous
devices.

Acknowledgement

This work was partly supported by Institute for
Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIP) (No.
R0190-16-2012, High Performance Big Data Analytics
Platform Performance Acceleration Technologies
Development) and (No. R0101-15-0054, WiseKB: Big
data based self-evolving knowledge base and reasoning
platform)

References

[1] A. K. Singh, et al: “Mapping on Multi/Many-core

Systems: Survey of Current and Emerging Trends,”
ACM DAC, No. 1, May. 2013. Article (CrossRef
Link)

[2] S. L. Shee, and S. Parameswaran: “Design
Methodology for Pipelined Heterogeneous
Multiprocessor System,” ACM DAC, pp. 811-816,
Jun. 2007. Article (CrossRef Link)

[3] S. Lee, et al.: “CPU-GPU hybrid computing for
feature extraction from video stream,” IEICE
Electron. Express, Vol. 11, No. 22, Nov. 2014.
Article (CrossRef Link)

[4] C. Oh, et al.: “Real-time face detection in Full HD
images exploiting both embedded CPU and GPU,”
IEEE ICME, Jul. 2015. Article (CrossRef Link)

[5] S. K. Rethinagiri, et al.: “Trigeneous Platforms for
Energy Efficient Computing of HPC Applications,”

IEEE HiPC, pp. 264-274, Dec. 2015. Article
(CrossRef Link)

[6] L. A. Feldkamp, et al.: “Practical cone-beam
algorithm,” J. Opt. Soc. Amer. A, Vol. 1, No. 6. pp.
612-619, Jun. 1984. Article (CrossRef Link)

[7] A. H. Anderson, and A. C. Kak: “Simultaneous
Algebraic Reconstruction Technique (SART): A
Superior Implementation of the ART Algorithm,”
Ultrasonic Imaging, Vol 6, No. 1, pp. 81-94, Jan.
1984. Article (CrossRef Link)

[8] L. Shepp, and Y. Vardi: “Maximum Likelihood
Reconstruction for Emission Tomography,” IEEE
Trans. Med. Imaging, Vol. 1, No. 2, pp. 113-122, Oct.
1982. Article (CrossRef Link)

[9] J. K. Kim, et al.: “Fast Iterative Image Reconstruction
in X-Ray CT,” IEEE Trans. Signal Processing, Vol
60, No. 10, pp. 5508-5518, Oct. 2012. Article
(CrossRef Link)

[10] N. Sorokin: “Parallel Backprojector for cone-beam
Computer Tomography,” IEEE ReConFig, pp. 175-
180, Dec. 2008. Article (CrossRef Link)

[11] Y. Lu, et al.: “Accelerating Algebraic Reconstruction
Using CUDA-Enabled GPU,” IEEE CGIV, pp. 480-
485, Aug. 2009. Article (CrossRef Link)

[12] J. K. Kim, et al: “Hardware Acceleration of Iterative
Image Reconstruction for X-Ray Computed
Tomography,” IEEE ICASSP, pp. 1697-1700, May.
2011. Article (CrossRef Link)

[13] K. Mueller, and R. Yagel: “Rapid 3-D cone-beam
reconstruction with the simultaneous algebraic
reconstruction technique (SART) using 2-D texture
mapping hardware,” IEEE Trans. Med. Imaging, Vol.
19, No. 12, pp. 1227-1237, Dec. 2000. Article
(CrossRef Link)

[14] K. Kim: 3D Cone beam CT (CBCT) projection
backprojection FDK, iterative reconstruction Matlab
examples, Mar. 2012. Article (CrossRef Link)

Chanyoung Oh received his B.S.
degree in electrical & computer
engineering from University of Seoul
in 2015. He is currently a M.S.-Ph.D.
student in University of Seoul. His
research interest includes parallel
software design, heterogeneous
computing, embedded GPU platforms,

computer vision, pattern recognition and medical imaging.
He is working at task mapping design methodology for
CPU+GPU heterogeneous manycore platforms.

http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1145/1278480.1278682
http://dx.doi.org/10.1587/elex.11.20140932
http://dx.doi.org/10.1109/ICME.2015.7177522
http://dx.doi.org/10.1109/HiPC.2015.19
http://dx.doi.org/10.1109/HiPC.2015.19
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1109/TMI.1982.4307558
http://dx.doi.org/10.1109/TSP.2012.2208636
http://dx.doi.org/10.1109/TSP.2012.2208636
http://dx.doi.org/10.1109/ReConFig.2008.12
http://dx.doi.org/10.1109/CGIV.2009.18
http://dx.doi.org/10.1109/ICASSP.2011.5946827
http://dx.doi.org/10.1109/42.897815
http://dx.doi.org/10.1109/42.897815
https://www.mathworks.com/matlabcentral/fileexchange/35548-3d-cone-beam-ct--cbct--projection-backprojection-fdk--iterative-reconstruction-matlab-examples

IEIE Transactions on Smart Processing and Computing, vol. 5, no. 4, August 2016

301

Youngmin Yi received the B.S.
degree in computer engineering and
the M.S. and Ph.D. degrees in
electrical engineering and computer
science from Seoul National
University, Seoul, Korea, in 2000,
2002, and 2007, respectively. He was a
Postdoctoral Researcher at the

University of California, Berkeley from 2007 and 2009,
and a senior researcher at Samsung Advanced Institute of
Technology from 2009 to 2010, before he joined the
faculty of the School of Electrical and Computer
Engineering, University of Seoul, where he is currently an
Associate Professor. His research interest includes
algorithm/architecture co-design for heterogeneous
manycore platforms, GPU computing, high-performance
distributed framework using manycore accelerators, and
computer vision applications design for multiprocessor
system-on-chip.

Copyrights © 2016 The Institute of Electronics and Information Engineers

