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Abstract: In this paper, we present methods to efficiently parallelize iterative 3D image 
reconstruction by exploiting trigeneous devices (three different types of device) at the same time: a 
CPU, an integrated GPU, and a discrete GPU. We first present a technique that exploits single 
instruction multiple data (SIMD) architectures in GPUs. Then, we propose a performance 
estimation model, based on which we can easily find the optimal data partitioning on trigeneous 
devices. We found that the performance significantly varies by up to 6.23 times, depending on how 
SIMD units in GPUs are accessed. Then, by using trigeneous devices and the proposed estimation 
models, we achieve optimal partitioning and throughput, which corresponds to a 9.4% further 
improvement, compared to discrete GPU-only execution.     
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1. Introduction 

Due to severe power constraints, heterogeneous 
computing has become mainstream, and specialized 
devices such as graphics processing units (GPUs) and 
field-programmable gate arrays (FPGAs) are integrated 
into a processor to achieve maximum performance with a 
limited power budget. In this context, CPU-GPU 
heterogeneous systems have become prevalent across all 
computing platforms, from embedded systems to servers. 
However, it is crucial to obtain optimal partitioning of an 
application in order to fully utilize heterogeneous systems. 
A lot of research has been conducted to find optimal 
partitioning and mapping in such systems [1, 2]. Lee et al. 
proposed a performance estimation model from which the 
optimal workload distribution of a feature extraction 
application can be obtained for CPU-GPU heterogeneous 
platforms [3]. Our previous work presents efficient 
mapping of a face detection application that fully exploits 
both the CPU and the GPU in the NVIDIA Tegra K1 SoC 
[4].  

These days, we can easily find not just CPU-GPU 
heterogeneous systems but also trigeneous systems in 
which the three different types of device exist. The term 
trigeneous computing was first introduced by Rethinagiri 
et al. [5], where energy-efficient platforms composed of a 

CPU, a GPU, and an FPGA were proposed for embedded 
platforms as well as server platforms. The three devices 
were used for a single application, although all three 
devices were not utilized at the same time.  

In this paper, we extend the performance model of Lee 
et al. [3] so as to find the optimal distribution for the 
trigeneous platform, and we confirm the viability of the 
proposed model with a trigeneous platform (consisting of a 
multicore CPU, an integrated GPU, and a discrete GPU) 
for an iterative image-reconstruction application. 

On the other hand, image reconstruction is used in 
computed tomography (CT), which aims to reconstruct a 
3D volume image inside an object (e.g., the human body) 
with a number of X-ray images. Since modern X-ray 
systems use cone-beam geometry, which produces a 2D 
image in a single acquisition [6], a 3D volume image 
composed of 3D slice images is reconstructed from a 
number of 2D images along the angles shown in Fig. 1. 
Therefore, it requires huge computational power. 

Moreover, recent methods such as the simultaneous 
algebraic reconstruction technique (SART) and maximum 
likelihood-expectation maximization (ML-EM) adopt 
iterative models [7, 8]. These iterative algorithms repeat 
backprojection and forward projection, updating the 
projected images based on the measured images with every 
iteration. Even though these iterative algorithms require 
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much more computation than the analytic algorithms [6], 
their importance and the demand for them in the fields are 
dramatically increasing since the iterative algorithms can 
reconstruct a high-quality 3D image with the same, or a 
smaller, number of X-ray images. This implies that the X-
ray dose for a patient can be reduced, and scanning time 
can also be shortened [9]. 

To meet the huge computational demands of iterative 
image reconstruction, many researchers have tried to take 
advantage of hardware accelerators for image 
reconstruction: FPGAs were used [9, 10], and GPUs [11-
13].  

On the other hand, it is necessary to utilize not only 
discrete GPU but also other units in the system to get the 
most out of the underlying platforms. Most modern 
processors already include an integrated GPU on the same 
chip, which is also programmable, like the discrete GPU. 
Compared to the conventional CPU-GPU heterogeneous 
system, a trigeneous system that consists of an integrated 
GPU, a discrete GPU, and a CPU can improve overall 
performance without any additional cost.   

In this paper, we first present how much performance 
improvement could be achieved by exploiting the 
characteristics of the single instruction multiple data 
(SIMD)-based architecture in GPUs for iterative image 
reconstruction. Then, we propose a performance 
estimation model that finds optimal partitioning for this 
trigeneous platform (what we call the CPU-GPU2 
trigeneous platform) to achieve the maximum throughput, 
with which iterative image reconstruction can be done in a 
timely fashion.  

The rest of the paper is organized as follows. In Section 
2, the iterative image reconstruction algorithm called 
SART will be explained, and the acceleration techniques 
for image reconstruction on GPUs will be explained in 
Section 3. Then, the proposed performance model for 
trigeneous platforms, as well as efficient mapping of 
SART on the platform, will be explained in Section 4. 
Section 5 shows the experimental results, which is 
followed by a conclusion in Section 6.  

 

2. Simultaneous algebraic reconstruction 
technique  

Fig. 2 describes an overview of general iterative image 
reconstruction. First, forward projection is performed to 
generate estimated projection images with the initial 3D 
volume image. The output of forward projection is 
compared with the measured input X-ray images, building 
the error map. Then, the backprojection operator 
reconstructs a temporary volume image using the error 
map. Finally, we correct the output volume image based on 
the reconstructed error map. This procedure is repeated 
until the errors between the estimated projection images 
and the input X-ray images fall below a specific threshold. 

Most iterative algorithms have the same structure 
described above, and share the equivalent forward 
projection and backprojection modules. The difference lies 
in how they update the volume at each iteration. For SART, 
the value of every voxel i, vi, is updated at the kth iteration 
using the following equation: 
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where pj is the value of pixel j, aij represents the geometric 
information of the X-ray system, and λ  is a relaxation 
factor introduced for noise control. Eq. (1) describes the 

overall procedure in Fig. 2. First, the term 
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corresponds to forward projection, which calculates line 
integrals from the X-ray source to the detector. Then, a 
comparison is performed by subtracting the calculated line 
integrals from the measured input X-ray images denoted as 

pj. The denominator 
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∑  in the numerator is for 

normalization. The differences are summed for all j, 
normalized, and scaled by λ before being distributed to 
voxels. These correspond to backprojection and correction. 

 

Fig. 1. The scheme of 3D cone-beam CT [9]. 

Input: measured projection (X-ray) images P 
Output: reconstructed volume image V 

1:

2:

3:

4:

5:

6:

 

7:

Initialize V 
Until convergence of E do 

E = Forward projection of V 

E’ = Comparison of E based on P 

V’ = Backprojection of E’ 

V = Correction of previous result V 

using V’ 
End 

Fig. 2. Iterative image reconstruction. 
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3. Acceleration on SIMD Devices 

We will now discuss the method to exploit GPUs, 
which takes advantage of the massive number of SIMD 
units.  

3.1 GPU and OpenCL 
GPUs were initially designed to efficiently process 

graphics applications. Since those applications typically 
require the processing of a tremendous amount of 
polygons, GPUs evolved to have highly parallel structures. 
To provide GPUs for general-purpose computing, NVIDIA 
introduced a framework called the Compute Unified 
Device Architecture (CUDA). In this paper, we adopt 
Open Computing Language (OpenCL), which is a similar 
parallel computing framework, not only for specific GPUs 
but also for a wide range of heterogeneous devices. These 
days, even FPGAs, as well as most GPUs and CPUs, 
support OpenCL. It employs a hierarchical programming 
model to leverage the highly parallel SIMD architecture of 
devices. The smallest execution unit is called a work-item, 
which can be perceived as a thread of conventional 
multicore processing. The work-group represents a group 
of threads, and every work-item in a work-group has its 
own program counter running concurrently as single 
instruction multiple threads (SIMTs), which is an 
extension of SIMD. The state-of-the-art GPUs have 
approximately 3000 SIMD units on a single chip. Thus, a 
GPU kernel can execute thousands of threads at once. 
Although GPUs provide high memory bandwidth, because 
the number of SIMD units is massive, memory contention 
often occurs, becoming a major performance bottleneck.  

3.2 Acceleration of SART 
Since the image reconstruction algorithm deals with a 

massive number of pixels and voxels, it is well-matched to 
the GPU architecture with thousands of SIMD units. By 
simply mapping each pixel or voxel into a work-item, one 
can achieve performance improvement a dozen times over 
the sequential CPU implementation. However, we should 
consider more steps to maximize performance. Generally, 
a GPU is more suitable for compute-intensive tasks, since 
each core has a tiny-sized cache, and frequent global 
memory access would degrade performance. Thus, we 
have to map the pixels or voxels more carefully to mitigate 
this problem. 

The SART algorithm can be separated into four parts: 
forward projection, comparison, backprojection, and 
correction. Comparison and correction are computed on 
the CPU, since these are memory-intensive, rather than 
compute-intensive. Backprojection and forward projection 
conduct almost the same job, which consists of geometry 
computation and interpolation. In backprojection, the 
straightforward implementation suffices, and no further 
optimization is required. In contrast, forward projection 
requires memory access optimization to better utilize 
underlying hardware architectures. First of all, forward 
projection cannot be computed in a single kernel since it 
must perform two interpolations with different dimensions, 

and OpenCL does not allow a thread to access the data 
written by another thread that resides outside its work-
group. Although OpenCL supports data sharing among 
work-items through local memory, it is only allowed 
access to the work-items in the same work-group. Since 
the first interpolation produces totally new volume data, 
the second interpolation cannot access its entire input 
unless the kernel utilizes only a single work-group, which 
would cause a significant performance decrease. Therefore, 
we divide forward projection into two separate kernels: 
one for the rotation using β as defined in Fig. 1, and the 
other for the projection. Then, the threads in the projection 
kernel can access the output of the rotation kernel, if the 
permutation of x-axis and z-axis in the volume is carried 
out between two kernels. The permutation can be done 
implicitly in one of two ways: 

A. writing the result of the rotation kernel in the 
permuted order 

B. reading the input as the permuted order in the 
projection kernel 

In the former, threads write the result to global memory 
along the z-axis. However, GPU memory and threads are 
aligned along the x-axis. Thus, the consecutive voxels 
along the z-axis, such as (x, y, z) and (x, y, z+1), are not 
consecutive in memory but are located far from each other. 
If the memory locations to be accessed are consecutive, or 
within a small stride, they are grouped into a single 
transaction in a GPU in order to amortize the high cost of 
global memory access. Because this is not the case with 
approach A, it suffers from low memory bandwidth. In 
contrast, approach B can achieve much higher memory 
bandwidth, since the threads in the rotation kernel write 
the result to global memory along the x-axis. Although the 
threads in the projection kernel now have to read global 
memory along the z-axis, as the range is limited in this 
interpolation, many threads read the same global memory 
locations, resulting in higher bandwidth. 

Figs. 3 and 4 illustrate how memory access patterns can 
affect performance. Suppose that there are six threads in a 

 

Fig. 3. Memory access pattern which is not coalesced.
 

 

Fig. 4. Memory access pattern which is coalesced. 
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block, each of which accesses global memory to read two 
data denoted with their respective thread id (tid). The red 
round rectangle indicates that, in this example, up to eight 
accesses can be grouped into a single transaction by the 
SIMD architecture if they are consecutive along the x-axis. 
In Fig. 3, 12 transactions are required to read the total of 
12 values, since they are stored along the y-axis. Note that 
the yellow box and blue box cannot be accessed in the 
same transaction, since the accesses are separate 
instructions from the same thread: the blue one is accessed 
after the yellow one. In Fig. 4, however, the threads in a 
block access consecutive memory locations along the x-
axis, allowing access from each thread to be grouped in 
one transaction. It requires only two transactions to read 
the same amount of data, which is only one-sixth of the 
amount in approach A.  

4. SART on Trigeneous Platforms 

We will now discuss the method to implement iterative 
image reconstruction with trigeneous devices and how to 
distribute the workload efficiently. First, we extend the 
performance estimation model from Lee et al. [3] to a 
system that has three different types of device. Then, we 
present the mapping algorithm for iterative image 
reconstruction using the estimated parameters. 

4.1 Performance Estimation Model for 
Trigeneous Devices 

Lee et al. [3] determined the optimal workload 
distribution using linear interpolation based on a pre-
experiment test. In this paper, we extend the model to the 
CPU-GPU2 trigeneous computing system. Since the 
workload for each task in image reconstruction is 
determined by the number of assigned projection images 
and increases linearly, we also adopt linear regression to 
estimate the execution time of the tasks. In contrast to Lee 
et al.’s model [3], we refine the regression by analyzing 
the characteristics of devices. 

In iterative image reconstruction, total workload WT is 
the total number of projection images, which is a fixed 
value from the given X-ray system, and can be represented 
as follows: 

 
  T DGPU CPU IGPUW W W W= + +  (2) 

 
where WCPU, WIGPU, and WDGPU are the workloads for the 
CPU, for the integrated GPU, and for the discrete GPU, 
respectively. 

It is well known that each processing element (i.e., 
device) in the system should have the same amount of 
execution time to maximize the overall performance when 
we parallelize a single task in a data-parallel fashion. 
Therefore, the execution time of a single task for all 
devices with optimal workload distribution ratio OWdevice 
can be described as shown in Eq. (3). 

 
    DGPU CPU IGPUOW OW OWα β γ δ ε ζ+ = + = +  (3) 

The execution times for each device are represented in 
Eqs. (4)-(6) in linear form, since they vary proportionally 
to the amount of the given workload, in general. Eqs. (4) 
and (6) are for a discrete GPU and an integrated GPU, 
respectively, and we will use the terms DGPU and IGPU 
from now on for convenience. 
 
 ( )  DGPU DGPU DGPUT W Wα β= +  (4) 

 ( )  CPU CPU CPUT W Wγ δ= +  (5) 

 ( )  IGPU IGPU IGPUT W Wε ζ= +  (6) 
 
The parameters α  to ζ  are derived from the data 

obtained in advance: we should measure the execution 
time for each device several times with the various 
workload settings. In contrast to Lee et al. [3], who used 
linear interpolation to obtain the parameters, we use linear 
regression, since simply interpolating two points may 
cause overfitting. 

When linear regression is used, first, take into account 
whether or not the measured data are actually linear. 
Although the measured points are generally in a linear 
shape, some intervals can show different slopes, forming a 
nonlinear shape, which can occur due to the characteristics 
of the device. For example, Fig. 5 shows the measured 
execution time and the estimated time as the number of 
assigned images increases on a DGPU. It shows an almost 
linear shape, but the slope at the beginning is nearly 
horizontal, which implies that the increase in workload 
does not lead to the increase in the execution time until it 
reaches a certain point; a DGPU usually has a huge 
number of processing cores and requires enough workload 
to fully utilize the cores. Until it is fully utilized, even if 
the workload increases, the tasks are executed 
simultaneously without increasing execution time. If this is 
not considered, the linear regression would result in a line 
with a larger error, as shown in Fig. 5(a). Then, the model 
could be refined so as to have multiple slopes, but it would 
require nonlinear regression. Thus, we chose to exclude 
that interval, since the points in the interval are rarely 
chosen as the optimal partitioning for the DGPU. Fig. 5(b) 
results in a line with less of an error under this 
consideration. 

Once the parameters are set by linear regression, we 

Fig. 5. (a) Improper regression, (b) proper regression 
considering device characteristics, when the x-axis is 
the workload and the y-axis is execution time (in 
seconds). 
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can decide the optimal workload distribution ratio by 
simultaneously solving Eqs. (2) and (3) as follows: 

 

  
    

T
CPU

WOW αε αδ αζ βε δε
αγ αε γε
− + + −

=
+ +

 (7) 

  
    

T
IGPU

WOW αγ αδ αζ βγ γζ
αγ αε γε
+ − + −

=
+ +

 (8) 

  
    

T
DGPU

WOW γε βγ βε γζ δε
αγ αε γε
− − + +

=
+ +

 (9) 

4.2 Task Mapping and Implementation for 
Trigeneous Devices 

In Section 4.1, we derived the optimal workload 
distribution for trigeneous devices. However, there are 
some issues in implementing iterative image 
reconstruction. First of all, the results obtained with Eqs. 
(7)-(9) are floating point values. However, the workload 
for each device in image reconstruction is an integer value, 
since the workload is the projection image. The naïve way 
to determine an integer value is rounding off the obtained 
floating point value, which could, however, result in non-
optimal performance. Therefore, we must determine the 
integer values carefully by taking into account the resultant 
execution time of each device, as shown in Fig. 6. The 
procedure first obtains the floor of the float value 
calculated using the equations (lines 1-2). Then, it 
distributes the remaining workload in a greedy fashion, 
finding a device with the minimal execution time when 
one more image is assigned to it (lines 3-6). 

Fig. 6 also shows the method to determine whether to 
parallelize a task or not (lines 7-10). Some tasks, such as 
comparison and correction, show better performance with 
single-threaded execution on a CPU, compared to 
parallelized execution over the three devices, since these 
tasks are highly memory-intensive with little computation 
for the processing cores, as mentioned in Section 3.2. 
Since the computational complexity of the iterative image 
reconstruction application is decided by the given X-ray 

system and does not vary at runtime, the parallelization 
can be determined with pre-experiment data. Fig. 7 
illustrates an example of trigeneous execution for an 
iterative image reconstruction application based on Fig. 6. 

Although the IGPU and the DGPU are idle while the 
CPU executes comparison and correction, the mapping and 
partitioning depicted in Fig. 7 is optimal. It is not only 
SART that has loop-carried dependency, but each task in 
SART also requires merged results from the previous task. 
Due to this, synchronizations between tasks are inevitable 
and make it impossible to execute tasks in parallel in a 
pipelined fashion. Thus, the devices can exploit only the 
data-parallelism by executing a task simultaneously with 
the optimal data partitioning for each device. With this 
inherent constraint, comparison and correction should be 
executed either in a data-parallel fashion or sequentially. 
And, it is more efficient for those tasks to run on a CPU, 
since the overhead for communication and synchronization 
is larger than the reduced execution time via data-parallel 
execution. 

5. Experiments 

In the experiments, we reconstruct a 128x128x128 
volume image from 210 images at 256x200 using synthetic 
projection images [14]. The specifications of the three 
different devices that we used for iterative image 

Input: parameter table P 
Output: The optimal workload for K devices 

1: 

 

2: 

3: 

 

4: 

 

5: 

6: 

7: 

 

8: 

9: 

10: 

Calculate W(K) with given P according to 

Eqs. (7) - (9) 

Floor W(K)  
While there exists workload to distribute 
do 

Find device k which has the minimal 

execution time with W(k)+1 workload 

Increment W(k) 
End while 
If estimated time with W(K) exceeds 

single-threaded execution time then 
Return Execute-on-Host 

Else 
Return W(K) 

Fig. 6. Workload partitioning for each task. 
Fig. 7. An example of trigeneous computing for 
iterative image reconstruction. 

 
 

Table 1. Platform specification. 

Types Devices Specs 

CPU Intel Core i7-4770 3.4 GHz, 8 MB Cache 
8 Compute Units (4 Cores)

IGPU Intel HD 4600 350 MHz up to 1.2GHz 
20 Compute Units 

DGPU NVIDIA GTX 960 
1,127 MHz, 2 GB Memory

8 Compute Units 
(1,024 Cores) 
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reconstruction are described in Table 1. 
Table 2 shows the execution time of our SART 

implementations. Approach A and B, explained in Section 
3.2, correspond to those in Table 2. Note that only the 
GPU kernel and memory copy time are shown, since the 
execution time of the functions that run on a CPU (such as 
update) are negligible. The rotation kernel in Approach B 
is 6.23 times faster than that of Approach A thanks to the 
efficient memory accesses, which result in 2.21 times 
speedup in total execution time on the GPU. The following 
experiments were conducted with Approach B. 

We profiled each task to obtain pre-experiment data, 
which are used for the proposed performance estimation 
model and to distribute the workload. Fig. 8 shows the 
profiling information for forward projection. Note that we 
plotted only a part of the data points out of the entire 
dataset. Fig. 8 shows that the DGPU outperforms the CPU 
and IGPU by up to 9.10 times and 6.00 times respectively. 
The severe imbalance in the computational power of the 
three devices makes it hard to improve overall 
performance; additional gain with the IGPU and the CPU, 
compared to DGPU-only execution, can be small if the 
DGPU is too powerful. However, the recent trends show 
that the performance of an IGPU is becoming higher. 
Moreover, the proposed model would be used for other 
trigeneous platforms. 

Table 3 shows the parameters that are derived from the 
proposed performance estimation model with the profiling 
data, and Fig. 9 shows the estimated execution times for 
tasks using the model. As mentioned in Section 4, only 
forward projection and backprojection are parallelized, 
since the other tasks are too small to be distributed 
efficiently across the three devices. With the parameters in 
Table 3 and from Fig. 6, optimal partitioning was 

determined to be (169, 17, 25) for forward projection, and 
(149, 20, 42) for backprojection, where x, y, and z in 
notation (x, y, z) represent the number of assigned 
projection images (i.e., workload) for the DGPU, CPU, 
and IGPU, respectively. As shown in Fig. 9, the proposed 
model estimates execution time accurately with an 
acceptable level of error: 1.19% for forward projection and 
5.96% for backprojection. 

This optimal partitioning of forward projection and 
backprojection achieved performance enhancement of 
18.70% and 11.12%, respectively, compared to DGPU-
only execution. Note that performance enhancement would 
vary depending on the specific devices in the system. 

Fig. 10 shows the end-to-end execution time of the 
iterative image reconstruction application with different 
devices. The proposed trigeneous execution with optimal 
partitioning improves performance by 9.49%, compared to 
DGPU-only execution, which corresponds to 81.91 times 
speedup, compared to the sequential application. Note that 
CPU+DGPU hybrid execution does not improve much, 

Table 2. Average execution time for a single iteration of 
the proposed image reconstruction on a GTX960. 

Kernel Function Approach A 
(ms) 

Approach B 
(ms) 

Backprojection 168.70 175.84 
Projection_rotation 899.65 144.49 

Projection_projection 295.68 297.07 
Total 1364.03 617.40 

 
 

Fig. 8. Execution time of forward projection over 
varying workload size for each device. 

Table 3. Parameters of the performance estimation 
model for trigeneous computing in iterative image 
reconstruction. 

Forward projection 
α  β  γ  δ  ε  ζ  

0.0020 0.0061 0.0180 0.0209 0.0118 0.0428
Backprojection 

α  β  γ  δ  ε  ζ  

0.0007 0.0533 0.0063 0.0279 0.0032 0.0178
 
 

Fig. 9. Performance comparison between estimated 
and measured results for backprojection and forward 
projection. 

 
 

Fig. 10. Comparison of execution time and 
corresponding speedup for each device and the 
proposed trigeneous computing. 



Oh et al.: CPU-GPU2 Trigeneous Computing for Iterative Reconstruction in Computed Tomography  

 

300

compared to the process of Lee et al. [3]. This is because 
iterative image reconstruction is a compute-bound 
application with relatively negligible data copy time, 
which is well-suited to the DGPU and tends to assign 
almost all workload to the DGPU. This results in little 
improvement, even if a CPU is utilized at the same time. 

6. Conclusion 

As heterogeneous computing has become prevalent 
these days, to efficiently exploit heterogeneous devices 
simultaneously has been of keen interest to many 
researchers. In this paper, we presented an efficient SART 
implementation using trigeneous devices: a CPU, a 
discrete GPU, and an integrated GPU. We first presented 
how SART can be accelerated efficiently using GPUs by 
considering SIMD architectures. Then, we proposed a 
performance estimation model and a mapping algorithm 
for optimal data partitioning on trigeneous devices to 
further increase the throughput of SART. By considering 
the memory access pattern, the execution time of SART on 
a GPU was reduced by 6.23 times, compared to a naïve 
GPU implementation. By utilizing a trigeneous device 
with the proposed estimation model, we further improved 
throughput by 9.4%. To the best of our knowledge, this is 
the first paper that deals with CPU-GPU2 trigeneous 
devices.  
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