X 84-21-6-13

A Network Partitioning Using the Concept of

Connection Index-Algorithm and Implementation

(EfE RS Bes R
MIER A&l — Fane]E o Hi)

PN G S NP /D = ok
(Chin Sup Park and Song Bae Park)

L

8% 22 (weighted graph) @ 2722 9 (connection index) b+ A 2-¢ Mdoll 7125 F 3z
doll gt Olv.e) ~v,e ZH7F mig] v vlale] -9 2§ x4 Falsd (heuristic) FdndlFE
A ot shod o},

AdH A= o] dnelFe] oS Aol A3 oo RZEA) dsle] HH e me Ao
Ao alF Fobe A4S AFsa o) Aotsl danelFel o sbx S-S Absia o Ay =2
o Al 7lEsd et

Abstract

Based on a new concept of connection index of a weighted graph, a new efficient heuris-
tic algorithm of O(v.e) for network partitioning is presented, where v and e are the number
of nodes and edges, respectively., Experimental results show that our algorithm is very
efficient and yields an optimal or near optimal solution for a number of partitioning pro-
blems tested. Some applications of the proposed algorithm are suggested and its computer

implementation is described in detail.

I. Introduction

Partitioning and piecewise approaches are
extensively used in computer aided design
(CAD) of large-scale networks and systems.
In circuit theory these approaches care called
variously — diakoptic analysis, generalized

*IE®E, BEE FHEWHRT
(Korea Inst. of Electronics Tech.)
*EER, BEPREN EE W E TR
(Dept. of Electrical Engineering, KAIST)
BYHTF 1 1984% 3 F 28H

hybrid analysis and node tearing analysis (2.13. 14,
%] which are, however, essentially the
same from the modified model analysis [15]
point of view.

In the automatic design of printed circuit
board (PCB) and integrated circuit (IC) layout,
the procedure can be divided into three steps:
partitioning, placement and routing. The first
and most important step, partitioning, implies
tearing apart a given network into many sub-
networks, and optimal partitioning generally
means minimization of the coupling between
the subnetworks. Partitioning of an undirected
graph belongs to the NP-complete class. 16}

19844F 118 ®W-FILBEt % 21 % %6 %

For NP-complete problems there does not
exist an algorithm of polynomial bound and
all of them except for isomorphism problems
are polynomially equivalent. (17]

In partitioning of graphs, after drawing the
associated graph of the problem, human may
exercise the ability of determining a fairly
good partitioning by laborous visual inspection.
However, for large networks a rigorous algori-
thm must be developed to systematically
tear apart the associated graph into optimal
or near optimal partitions.

A number of partitioning algorithms have
been proposed in the past in various fields.
The hitherto published algorithms may be
classified as follows from various points of
view.

1, Utility

1) Network and system decomposition [1,3,5,
69,111

2) PCB and IC layout [4]

3) Computer program and logic [{19,20]

4) Statistical data grouping [20]

2. Objective of minimization
1) Number of interconnection nodes [1,5,9]
2) Number of interconnection branches[3,11]
3) Total cost of interconnection branches [4]
4) Distance between the centroids of parti-
tions [20]

3. Methodology

1) Growing clusters of subnetwork minimal
group (3]
cliques [5]
strong component in digraph [6]

2) Finding the contour of a graph
contour approach [1]

SBP approach [11]

3) Interchanging nodes until some local opti-
mallity condition is satisfied [4]

4) Transforming the problem into some as-
sociated mathematical equation [20] or
finite automata [7]

5) Maximum flow minimum cut [22]

Most of the above methods do not yield an
efficient heuristic algorithm(2] and some
of them are of little practical use. One com-
mon difficulty is the seed selection effect.
The partitioning algorithm to be presented in

95

this paper is based on a new concept of con-
nection index and almost elimimates the
seed selection effect, although a greedy strategy
similar to the contour approach (1] is used.

In section II, connection cost and connec-
tion index of a section graph are first defined.
A condition for the contractable section
graph (CSG) is then suggested and, using it
the CSG’s are found by breath first search
and collapsed to supernodes. This process
is repeated until the final contracted graph
with N nodes, each with a weight not exceeding
a given partition size, is obtained, where N
is a given number of partitions. In Section
III is introduced the mnew partitioning
algorithm, while a sufficiently detailed descrip-
tion of the program is given in Appendix. In
Section IV two examples are given to illustrate
the proposed algorithm. The computational
complexity of the above algorithm is analyzed
in Section V. The algorithm is tested for a
number of network partitioning problems
and the results, as given in Section VI, show
that it is very efficient and yields an optimal
or near optimal solution to all of the tested
problems, Finally, application of the proposed
partitioning algorithm to two network pro-
blems is suggested.

II. Definitions and Theorems

Before describing the new algorithm we
give definitions of some terminologies and
notations, We will also introduce some useful
theorems.

Geneally a graph is denoted as G(V,E),
where V is a finite non-empty set of nodes
and E is a set of edges. A graph in which
weight is assigned to both or either of its
nodes and edges is called a weighted graph,
and a graph in which a direction is assigned
to every edge is called a digraph (directed
graph). In this paper we are concerned with
weighted undigraphs (undirected graphs).
(However, an undigraph will be converted to
a symmetric digraph in storing the graph
data for the convenience of computer im-
plementation of the algorithm). A graph
which contains neither a self loop nor a parallel
edge, is called a simple graph.

9% A Network Partitioning Using the Concept of Connection Index-Algorithm and Implementation

Defintion 1. Section Graph

A section graph Gs(VP’EP) associated with
a node subset Vp of V is a subgraph of G(V,E)
consisting of Vp and all edges interconnecting
the nodes in Vp. Sometimes, Gy (Vp,Ep)
will be denoted simply as Gg(Vp).

Defintion 2. Contractable Section Graph

A section graph whose components are
not parted during some stage of partitioning
operation is called a contractable section
graph (CSG) in that partitioning stage.

Definiton 3. Weighted Degree of a Node
For a weighted graph, let

w(vi) = weight of node v.

w(ei) = weight of edge S

w(Vp) 1
Pa, = wvp M

i€ VP

The weighted degree of a node v, € Vora
node set VP € V is defined as

D(Vi)é Vj 263 v w(e(Vi,Vj)) 1))
i Y

D(V,) & D(v. 3

Ve, Ty P 3)

In the above e(vi,v.) denotes the edge connect-
ing node v; and node vj.

Definition 4. Connection Cost

The connection cost f(VP,V) from a node
set Vp to a node set V4, is the sum of weights
of edges connecting the nodes in VP to those
in VQ’ that is,

w(e(vi,vj))
4)

\'
1

V.

fVpVole =
€
j €

XP
Q
In particular, f.(VP) defined by

(V) & f(Vp.Vp) (5)

is twice the sum of weights of edges in Gs (Vp),
and may be called the internal connection cost
of GS(VP). Also, £ (Vp) defined by

£,(Vp) & f(Vp, V-Vp)

where V is the node set of given a weighted
graph, is the sum of weights of the cutset
edges incident at a section graph GS(VP),
and may be called the external connection cost
of GS(VP).

Lemma 1.
For an undigraph,

f(Vp,V) = f(V,Vp)- @)

Lemma 2.
Let Vp be the union of disjoint node sets Vl’

Vo, o Vm' Then,

m
f(VP,VQ)= Kél f(Vk,VQ) (8)

Definition 5. Contracted Graph

A contracted graph (C-graph) is a graph
resulting from callapsing each CSG to a (super)
node with thinning operation in an iterative
partitioning stage, with the connection cost
and the total node weight associated with
each CSG being preserved.

Lemma 3.

The following operations are equivalent
and will be called optimal partitioning.

(i) Partitioning a given weighted graph
with a total node weight w(V) to N parti-
tions py,py, .- Py, such that w(V,) < w
(V)/N (where V, is the node set of Py k
= 1,2, .., N) and the total connection cost
among the N partitions is minimum.

(ii) Converting the same graph to a C-graph
with N (super) nodes Vi, V'2, s VN such
that w(Vi{) < w(V)/N (k=1,2, ..., N), and
the total weighted degree of the N (super)
nodes is minimum.

Lemma 3(ii) suggests that optimal parti-
tioning may be obtained iteratively by finding
a sequence of CSG’s, each (super) node of
the resulting C-graph satisfying the conditions
stated above.

Theorem 1.
For an undigraph G(V,E),

D(VP) = fe(VP) + fi(VP))]

1984%F 117 BEFTHBEL H 21 % $ 658

where VP < V.

Proof: The theorem can easily be proved
by mathematical induction. Let N(Vp) be
the cardinality of a node set Vp. For N(Vp)
=1, (9)is true by the definitions of respective
terms. Now, assume that (9) is true for N(VP)
=n. Then, for Vo = Vp U vily; # Vp), ie.
for N(VQ) = ntl, (9) also holds true since

D(VQ) = D(VP) + D(Vi)
f(VP, V-VP) + f(VP’VP) + f(vi’VP)
+ f(vi’V'VP'Vi)

+HVVp) + f(v,,v) = v, V-Vpv)
[£(VpV-Vpv) + 17,V -Vpvp)]

+ [f(Vp,v) + f(Vp,Vp)] + [£(v,,Vp)
+ f(vi,vi)]

= f(Vg, V-V) + H(Vp,V) + v,V)
f(V Q) + (V)

Therefore, (9) is true for any Vp& V.

Corollary

In partitioning a given node set V into N
partitions such that V = %V], V2, s Yl
and w(Vk) < Wy for k = 1,2, ..., N, the
following two expressions are equivalent:

N
(i) minimize 2 fe(Vy)
K=1 ¢ K

N
(ii) maximize X fi(Vk)
K=1

N
Proof: (V) = KEI(D(Vk) fi(Vk))
N N
= D(V)——kE=1 fi(vk)

where D(V) is constant for a given graph.
Therefore, the statement to be proved is
true.

Difinition 6. Connection Index

The connection index C(VP) of a section
graph GS(VP) associated with a node set VP
is defined as the ratio of the internal connec-
tion cost of VP to the external connection

cost of Vp, that is,

f(Vp, V-Vpvp) + £(Vp,v)) + f(Vp,Vp)

97

C(Vp) & F(Vp)/f(Vp) (10)

As will become clear in the next section,
the introduction of the concept of connection
index is motivated by an effort, in network
partitioning, to find a section graph for which
the total weight of internal edges is as large
as possible, within constraint for the total
internal node weight, and, at the same time,
the total weight of outgoing edges is as small
as possible.

Theorem 2.

For any node v; in a graph G(V,E), there is
a node set Vp such that vi e Vp and C(Vp)
is maximum or infinite,

Proof: If Vp = v;t, then C(Vp) = 0 and
when VP = V then C(VP) is infinite. From
this fact the theorem follows.

(b)

Fig. 1. A graph for illustration of
definitions.

To illustrate some definitions given thus
far we consider Fig. 1. Initially the node
subset VP consists of nodes 1 and 4 and the
associated section graph Gs(VP) consists of
nodes 1 and 4 and edges ¢ and d. The weighted
degree of node v) D(vl), is w, + Wy T oW
+owy and that of node set VP, D(VP), is W,
+wy t 2(wc+wd) tw, tw. The total node
weight of Gs(VP) is Wyt wy and the connec-
tion cost f(VP,V) = W, T W, The internal
connection cost fi(VP) is 2- (Wc+wd) and the
external connection cost fe(VP) is wtw o+
witwy. The connection index C(Vp) is the
ratio of these two, and hence 2.2/4 if all

98 A Network Partitioning Using the Concept of Connection Index-Algorithm and Implementation

edges are equally weighted. It is easily seen
that (9) holds true for Vp. If Gs(Vp) does
not part during a partitioning iteration stage,
it may be regarded as a CSG. GS(VP) may
grow during a partitioning stage to include
node 5 and hence edge b and then it may
be collapsed to a supernode. If Gs(VQ) is
likewise collapsed to a supernode and no
further operation is performed in this iteration
stage, we will end up with a C-graph as shown
in Fig. 1(b), where two supernodes have
weights w1+w4+w5 and w2+w3+w7, respec-
tively.

II. Algorithm

Qur objective is to partition a given weighted
graph into a given number N of CSG’s such
that the sum of weights of the nodes in each
CSG does not exceed a given number Woax
and the number of torns Nt’ i.e., the sum of
weights of the edges interconnecting the
CSG’s, is minimized.

Essentially, the strategy of the new al-
gorithm can be stated as follows:

Step 1. Selecting a seed (initial CSG, the
node set of which is denoted as VK), find one
of its adjacent nodes AR that gives the largest
connection index together with the original
CSG; if the new index is greater than the
previous one, that is, if

Cvg + Va)>C(VK) (11)

then include that node to the original CSG.
Grow the CSG in this way until either the
connection index begins to decrease or the
node weight of the CSG exceeds Woax
Collapse the resulting CSG to one supernode,
Step. 2 Repeat Step 1, selecting another
seed from the remaining nodes, until every
node is included in some CSG and thus col-
lapsed to some supernode to obtain a C-graph,
Step. 3 If the number of supernode in
the resulting C-graph is greater than N, repeat
Steps 1 and 2 with the C-graph successively;

otherwise, stop.

Although the above approach seems to
be reasonable conceptually, it was found
that criterion (11), being a local searching
strategy, has a weak point such as the seed

effect. Hence, instead of (11), we propose
the following criterion for A the adjacent
node which gives the largest C(VK+va), to be
included in the current CSG:

C'(VK + va) >C(VK) +§ 12)
h c(v)Afi(VK) i F(VK’va) (13)
where C’ g tv)e
a f(Vg +v,)
L <
§ = (14)
0 , otherwise,

Note that C (VK +v,) of (13) becomes C(VK+v,)
if f(VK,vy) in the numerator is multiplied
by 2. Hence, criterion (12) is more strict
than (11).

Even with criterion (12), a CSG with only
two nodes may occur. If this bad sitution
happens during the course of finding a C-
graph, we neglect such a CSG and treat the
related two nodes in the same way as the
remaining nodes to include them in the sub-
sequent CSG’s but they will not be selected
as a seed in the current iteration stage, unless
there remain no other nodes to be explored
in that particular iteration stage of finding
a C-graph.

IV. Examples

To illusirate the algorithm described in
the above we give two examples. In the
following we assume that all nodes are equally
weighted and so are all edges,

Example 1. For the graph of Fig, 2(a)
we assume that N=2, w =5 and v, is
arbitrarily selected as the seed (initial CSG-1).
Thus, V1 =V initially. Hence, C(Vl) = 0/3
and § = 0. Now, Vl has three adjacent nodes,
namely, Vo, V3 and V4 C(V1+va) = 2-1/4 for
v, = any of vy, V3 and v,. Therefore, we
arbitrarily pick up \0) (when the scores are
even, we pick up the node in the order of
data stored) and calculate C'(V1 + v2) =(0 +
1)/4 according to (13). Therefore, the test

19845 115 BFIBEE FH 21 % F 68

criterion (12) is satisfied. All this is indicated
in the first row of Table 1. (*O” or “X”
in the colum “Test” indicates whether the
picked-up adjacent node v, meets criterion
(12) or not, respectively.) CSG-1 now includes
vy and vy and Vl =y U A Thus we obtain
the second row of Table 1, which shows that
the candicate node v, does not meet the
criterion and hence we do not try to grow
CSG-1 any further. Furthermore, since CSG-1
contains only two nodes (a bad situation),
we actually discard it and start all over again,
with a new seed vy (this choice is again arbi-
trary but nodes 1 and 2 can not be a seed
candidate any more), The CSG starting with
vy is grown to include Vg, ¥y and vy sequen-
tially but not Vg, as indicated in rows 3 through
6 in Table 1. We collapse this CSG to a super-
node, Then, from the remaining nodes we
arbitrarily pick up Vg as the next seed and grow
the new CSG to include all the remaining
nodes. Thus we end up with a C-graph with
two supernodes (implying two partitions), as
shown in Fig. 2(b) each satisfying the condition
for the maximum node weight.

—
N

(a)

{(b)

Fig. 2. (a) Graph of Example 1.
(b) The C-graph; the number in ()
indicates the weight of the super-
node,

In other words, in one iteration we have
obtained the desired partitioning with the
number of torn Nt =2, which is optimum in
this problem, This optimal result can not be
obtained in the contour approach! ! as applied
to branch tearing, if we start with node vi—
which minifests the seed effect of the contour
approach.

99
Table 1,
VK cv K)) va Ccwv K+va) Test

(1 0 2 1/4 o}
[1,2] 2/4 1/8 3 3/5 X
(3] 0 4 1/4 o)
[3,4] 214 1/8 7 4/3 0
[3.4,7] 6/3 0 1 8/2 s}
(3,4,7,1] 10/2 0 8 1173 X
[5] 0 0 2 1/4 0
[5,2] 214 1/8 6 4/3 o
[5,2,6] 6/3 0 8 8/2 o}

[5,2,68] 10/2

CSG-1 [1,2], neglected
CSG-1 [34,7,1]
CSG-2 [5,2,6,8]

Example 2. For the graph of Fig. 3(a) we
assume that N=2, wmax=9 and vy is selected
as the seed. The first C-graph obtained by

Table 2.
Vi Cvy) 8 Va C’(VK+va) Test
(1] 0 0o 2 1/4 o
[1,2] 2/3 1/6 3 4/2 (0]
[1,2,3] 6/2 0 4 8/2 O
[1,2,3,4] 10/2 0 6 11/3 X
[51 0 0 6 1/4 (6]
[5.6] 24 1/8 T 4/4 0
[5,6,7] 6/4 0 10 8/4 O
[..10] 10/4 0 11 12/2 0
[...,11] 14/2 0 14 15/4 X
(8] 0 0 9 1/4 o
[8,9] 2/4 1/8 12 3/5 X
[12] 0 0 8 1/4 0
[12,8] 2/4 1/8 13 4/6 0]
[12,8,13] 6/6 0 15 8/5 0
[..,15] 10/5 0 16 12/4 o)
[..16] 14/4 0 17 16/3 o}
[.,17] 18/3 0 14 20/3 (0]
[..14] 22/3 0 9 24)2 0
[...9] 26/2 0 none
CSG-1 [1,2,3,4]
CSG-2 [5,6,7,10,11]
CSG-3 [8,9], neglected
CSG-4 [12,8,13,15,16,17,14,9]

100 A Network Partitioning Using the Concept of Connection Index-Algorithm and Implementation

following the procedure indicated in Table
2 is shown in Fig. 3(b), which is, in turn,
further reduced to the second (and final) C-
graph as shown in Fig. 3(¢), which is the opti-
mal result with Nt =2,

3 11

@ O

(8 (8)
(b) {¢)

Fig. 3, (a) Graph of example 2.
(b) First C-graph of (a).
(c) Final C-graph. The numberin ()in
(b) and (¢) indicates the weight of
the supernode.

V. Computational Complexity

The most time-consuming process in the
proposed algorithm is the step of growing a
CSG. Therefore, the computational complexity
may be considered to be proportional to the
total number of steps taken in growing all
CSG’s in the whole iteration stages, namely,
proportional to the number of rows in Table
1 or 2. Suppose at the beginning of the k-th
iteration stage we have v(nodes and e(k)
edges. In the worst case each node is chosen
as a seed (once at most) and the adjacent nodes
to be explored for growing the CSG is of the
order of e Thus, when the iteration stops
at the m-th C-graph (m is usually small, perhaps
less than 5, in most of practical problems),

m
the order of complexity is 0 (1_21 V(l)-e(l))
or 0(v.e), where v=v{1) and e=e(1) are the
number of nodes and edges, respectively,

in the original associated graph and v(l) >
V2>, 6)> , (1) >(2 >e(3) et

V1. Experimental Results

The proposed algorithm has been imple-
mented on the HP3000 computer. The details
of the program is given in Appendix. It was
tested for a number of graphs. Table 3 shows
the results for those graphs given in Fig. 12 of
[1] and reproduced in Fig. 4 below. In Table
3, v is the number of nodes, e is the number
of edges, Nt,e is the experimental N , N 0 is
the optimal Nt and Time is CPU time in se-
conds on HP3000. As can be seen, in most
cases the algorithm gives optimal partitioning,

Table 3. Summary of experimental results
for the graphs of Fig. 5.

Fig. v e N Woax Nt,e Nt,o Time

18 6 5 0.086
27 4 4 0377
15 18 18 0.132

8 6 6 0.026
12 8 8 0.052
20 14 14 0.144
30 22 20 0.358

Fig.5() 46 69
Fig5(b) 94 176
Fig.5(c) 51 126
Fig.5(d) 14 25
Fig.5(c) 37 68
Fig.5() 50 100
Fig.5(x) 77 180

W oW AN R AW

v

AT IR IATN AN ()
PN BN PN

I

(c)

(d)

Fig. 4. Graphs for test of the proposed algorithm.
The arrow indicates the seed.

(8)

19845 117 T|FLBEE £ 21 & # 6 %

while in other cases it gives near optimal parti-
tioning with only one or two additional torns
as compared with the optimal partitioning.
Note that the last statement is true in general
even for those graphs without heavily clustered
components (that is, for those graphs in which
most of the circuit lengths are equal and the
minimum circuit length is relatively large) such
as Fig. 4a. Incidentally, in the above experi-
ments all nodes and all edges are again equally
weighted for simplicity.

Fig. 5 plots the computation time versus
the product of ve from Table 3. It is seen
that O(ve) is an upper bound for the com-

CPU Time
(sec)
oe}
o.5r -
-~
04 -7
B ”~
f -7 (b
03} //’ (9)
//
o2} -
-3
X
01t % h (@
-7 x &J)
xd)fe) , [L Lo 1, ve

0 2 4 6 8 10 12 14 16x10°

Fig. 5. Processing time vs. the product
vs for the graphs of Fig. 4.

CPU Time
(sec)
7/
1.2 .
// ¢
1.0 /e
//
08 P
/
06 7/
Vd
s
04 ’
LN
0.2 %
a XX 1 L L 1 v
o) 100 200 300 400 500
No .of
(b) nodes

Fig. 6. (a) Test pattern. (b) Processing time vs,
v(total number of nodes) for the
graphs of Fig, 4 and Fig, 6(a).

101

putational complexity since all the data points
are bounded by a straight line. It is interesting
to note that actually the processing time is
0(v), as can be seen from Fig. 6(b), where not
only the data of Table 3, but also the com-
putation times for the test pattern of Fig. 6(a)
are plotted,

VII. Applications to Network Problems

The algorithm presented in this paper can
be applied to many practical problems in net-
work analysis and design, among which we will
consider the VLSI layout and the diakoptic
analysis problems. We will give only some
suggestions without going into detailed de-
velopment.

In the VLSI design, in particular, in the gate
array approach the current trend is to use
cells as the basic circuit blocks and to find
an efficient way of placing and interconnect-
ing the cells compatible to the circuit configura-
tion. Therefore, in the VLSI layout design,
partitioning plays an important role, in which
the objective is usually to minimize the sum
of the weights of torn edges. In order to apply
the partitioning algorithm to this layout pro-
blem, we have to first construct the associated
graph, which will be done in the following
way. Each circuit element or cell is converted
to a node whose weight represents the geome-
tric size of the corresponding element or cell.
On the other hand, the edges are weighted
equally as unity in general; a larger weight may
be assigned, however, to those edges which
are desired to be short in length for low ohmic
voltage drop or for low electric/magnetic
coupling, Sometimes edges with a negative
weight may be added between those elements
which are not desired to be in the same cluster,
The partitioning algorithm may now be ap-
plied to the associated graph constructed in
this way.

Next, consider the diakoptic analysis pro-
blem. When the modified nodal approach (261
is employed for circuit analysis, node tearing
is preferable since branch tearing increases the
number of variables in general. The idea and
algorithm presented in this paper may still
be applied to the case of node tearing except

102 A Network Partitioning Using the Concept of Connection Index-Algorithm and Implementation

that connection cost (Definition 5) should be
interpreted now as the number of edges whose
terminal nodes are not the same, in any expres-
sion involving this term (in particular, in the
test condition (12) and (13)). (In actual pro-
gramming, an edge table, instead of a node
table, may be needed to store the terminal
nodes.) The matrix of diakoptic analysis is
of the bordered block diagonal form and the
number of torn nodes and edges,is equal to
the width of the border. With the same parti-
tion size and number of partitions, the thinner
the border is, the less the computation time
is required. One important restriction is that
there must not be coupling between different
partitions except the coupling at torns. Thus,
for example, the controlling and controlled
branch pair should not be torn, but treated
as a supernode from the biginning. Transistors
belong to this category. Such a supernode
should be weighted by the number of nodes
within it that are not represented in the asso-
ciated graph.

VIII. Conclusion

Considering the concept of the newly
introduced connection index, the ratio of
twice the sum of weights of edges in a CSG
to the sum of weights of edges incident at
the CSG, it is reasonable to grow a CSG,
starting with a seed, in such a way that the
new CSG with one adjacent node added has
the largest possible connection index. This
local searching technique, as found to have
some weak points, was modified for global
searching and to cover broader graph confi-
gurations. The modified criterion (12) can
not be unique by nature, but it worked well
for most of partitioning problems, when used
together with the special treatment of the
CSG with only two nodes as mentioned pre-
viously.

The proposed algorithm has the following
features:

1. Weighted graph partition algorithm.

2. Effective due to the greedy strategy

employed.

3. No seed effect in most cases.

4. Interactive procedure easily implement-

able.

5. It yields an optimal solution in most
cases (only a few additional torns in
near optimal cases).

Fig. 7. An articulation point of two cliques to
illustrate the seed effect.

Nevertheless, it was found that the pro-
posed algorithm encounters some difficulty
for graphs of uniform structure such as honey-
comb - like one, which necessiates further
investigation. It was also found that the
seed effect still exists for an articulation point
of two cliques such as Fig. 7, since, given
N=2 and wmax=6, we end up with the parti-
tion as indicated by the dotted line @(®)
if node 1® is selected as the seed. Applica-
tions of the algorithm to VLSI layout design
and diakoptic analysis have been suggested
and will be published elsewhere in full context.

Appendix
Program Partition

1. Read input data and construct the associated
graph (it becomes the initial C-graph).

2. Set up the array D(k) of the weighted degree
for each (super) node of the C-graph. k=1~
NN; NN = the number of (super)nodes.

3. Initialize the node status NSTS (k).

0, initially

a positive integer, which indica-

tes the number of the CSG to

which node k belongs.

NSTS(k) =

4. For k=1to NN do
if NSTS(k) = 0 then call CSGFND(k)
end
5. Make a C-graph and update NN and D(k).

19844 115 BT LABEE

oo

B2 % ¥ 6%

. If NN <XN (the given number of partitions)
then goto 7 else goto 2.

. Print out the results,
. Call exist
. end partition

Procedure CSGFND (SEED)

. Injtialize and set up the table of adjacent

nodes, ANS,

. Find a node from ANS which gives the

largest connection index.

. If criterion (12) is satisfied then update

ANS, C,and DELTA: goto 2

. Check the number of nodes in the current

CSG.

If it is two and there remain other nodes to
be explored, then delete the current CSG;
goto 2

. Save the current CSG and update the status

of its nodes
end CSGFND

References

[1] A.S. Vincentelli, L.K. Chen, and L.O.
Chua, “An efficient heuristic cluster
algorithm for tearing large scale net-
works,” IEEE Trans. Circuits and Sys-
tems, vol, CAS-24, pp. 709-717, Dec.,
1977.

L.O. Chua and L.K. Chen, ‘“Diakoptics
and generalized hybrid analysis, IEEF
Trans. Circuits and Systems, vol. CAS-
23, pp. 694-705, Dec., 1976.

F. Luccio and M. Sami, “On the de-
composition of networks in minimally
interconnected subnetworks,”IEEFE Trans.
Circuit Theory, vol. CT-16, pp. 184-
188, May, 1969.

[2]

[4] B.W. Kernighan and S. Lin, “An efficient
heuristic procedure for partitioning
graphs,”’ Bell System Tech. J., vol. 49,
no. 2, pp. 291-307, Feb., 1970,

A.E. Engle and D. A. Mlynski, “Cliques
and partition of graphs,” IEEE Proc.
ISCAS/78, pp. 81-82, 1978,

W. Tang, A.N, Michel, and H.W. Hale,
“On structure and stability of inter-

connected dynamical systems,” IEEF

[7]

(8]

9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

103

Trans. Circuits and Systems, vol. CAS-
27, no. 5, pp. 391-404, May, 1980.

P. Rosenstiehl, J. R, Fiksel, and A. Holli-
ger, “Network of finite automata capable
of solving graph problem.”

R.P, Tewarson, Sparse Matrices, Acade-
mic Press, 1973,

G. Guardabassi and A.S, Vincentelli,
“A two levels algorithm for tearing”
IEEE Trans. Circuits and Systems, vol.
CAS-23, pp. 783-791, Dec. 1976.

G. S. Dantzig and P. Wolfe, “The decom-
position algorithm for linear program-
ming,” Fconometrica, vol. 29, no. 4, pp.
141-150, Jan., 1970,

N. B. Rabbat and H.Y. Hsieh, ““A latent
micromodular approach to large scale
sparse networks,” IEEFE Trans. Circuits
and Systems, vol. CAS-23, no. 12, pp.
745-751, Dec., 1976,

E.C. Ogbuobiri, W, F, Tinney, and J, W,
Walker, ‘“Sparsity directed decomposi-
tion for gaussian elimination on ma-
trices,” IEEE Trans. Power, Appr. Syst.,

vol. PAS-89, pp. 141-150, Jan., 1970,
I.N. Hajj, “Sparesity consideration in
network solution by tearing,” I[FEE

Trans. Circuits and Systems, vol. CAS-
27, no. §, pp. 357-366, May, 1980,
F.F. Wu, “Solution of large scale net-
works by tearing,” IFEE Trans. Circuits
and Systems, vol. CAS-23, no. 12, pp.
705-713, Dec., 1976.

C. W. Ho, A. E, Ruehli, and P, E,Brennan,
“Modified nodal approach to network
analysis,” IEEE Trans. Circuits and
Systems, vol. CAS-22, no. 6, pp. 504-
509, Jun., 1975,

A.V, Aho, J.E. Hopcroft, and J.D.
Ullman, “The design and analysis of
computer algorithms,” Reading, Mass.:
Addison-Wesley, 1974.

R. M. Karp, “Reducibility among com-
binatorial problems, in complexity of
computer computation,” pp. 85-703,
New York: Plenum Press, 1972,

G. Persky, D.N. Deutch, and D.G.
Schweikert, “LTX a minicomputer
based system for automated LSI lay-
out,” J. of Minicomputer Based System,
vol. 1, no. 3, pp. 217-255, May, 1977.

104

(19]

[20]

[21]

[22]

A Network Partitioning Using the Concept of Connection Index-Algorithm and Implementation

D. Ferrari, “Improving locality by criti-
cal working sets,” Comm. of ACM,
vol. 17, no.11, pp. 614-620, Nov.,1974.
J.C. Gower, ‘“Comparison of some
methods of cluster analysis,” Biome-
trices, vol. 54, pp. 623637, Dec., 1967.
B. W, Kernighan, “Some graph partition-
ing problems related to program segmen-
tation,” Ph.D. These, Princeton Univ.,
pPp.74-726, Jan, 1969.

L.R. Ford and D. R. Fulkerson, “Flows
in Networks,” Princeton, N.J.: Princeton

(23]

[24]

[25]

Univ. Press, 1962,

S. Lin, “Heuristic programing as an aid
to network design,” Biometrics, vol.
54, pp. 623-637, Dec., 1967.

G. Kron, “A set of principles to inter-
connect the solutions of physical sys-
tems, J. of Appl. Physics, vol. 24, no. 8,
pp. 965-980, Aug., 1959.

P. M. Lin, “A survey of application of
symbolic network functions,” IEEFE Trans.
Circuit Theory, pp. 723-737, Nov., 1973,

