• Title/Summary/Keyword: Particulate air pollution

Search Result 444, Processing Time 0.03 seconds

A Study of Indoor Air Monitoring IoT System Customized for Medical Institutions (의료기관 맞춤형 실내 공기 모니터링 IoT 시스템 연구)

  • Lee, Hyo-Seung;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1217-1222
    • /
    • 2020
  • Currently, studies on environmental pollution are being conducted in worldwide including Korea. Among them, various efforts are being made to prevent the health and environmental pollution of the people nationwide by keeping and managing the indoor air of various facilities used by many users. In particular, it is suggested that many people who visit medical institutions have diseases or illnesses and may have a significant impact on chronic diseases such as headache, depression, neuroticism, heart disease, and cancer related to indoor air pollution. Considering this situation, this paper is expected to provide comfortable and clean indoor environment to the inmate by providing central monitoring of air pollution and automatic call function of the person in charge through indoor air monitoring IoT system to be applied to medical institutions.

Risk-Based Damage Cost Estimation on Mortality Due to Environmental Problems (환경 오염으로 인한 인체 위해도에 입각한 사망 손실 비용 추정에 관한 연구)

  • Kim, Ye-Shin;Lee, Yong-Jin;Park, Hoa-Sung;Shin, Dong-Chun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • Objectives : To estimate the value of statistical life (VSL) and health damage cost on theoretical mortality estimates due to environmental pollution. Methods : We assessed the health risk on three environmental problems and eight sub-problems. Willingness to pay (WTP) was elucidated from a questionnaire survey with dichotomous contingent valuation method and VSL (which is the division of WTP by the change of risk reduction) calculated from WTP. Damage costs were estimated by multiplying VSL by the theoretical mortality estimates. Results : VSLs from death caused by air pollution, indoor air pollution and drinking water contamination were about 0.3, 0.5 and 0.3 billion won, respectively. Damage costs of particulate matters ($PM_{10}$) and radon were higher in the sub-problems and were above 100 billion won. Because damage cost depends on theoretical mortality estimate and WTP, its uncertainty is reduced in the estimating process. Conclusion : Health damage cost or risk benefit should be considered as one scientific criterion for decision making in environmental policy.

A preliminary study of Standardization Plan on Underground Air filtration Facility (지하역사 공기여과장치 표준화방안 사전연구)

  • Bae, Sung-Joon;Hwang, Sun-Ho;Shin, Chang-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.919-929
    • /
    • 2009
  • 2008, Seoulmetro transports an average of 3,952,000 passengers every day with a 0.8% increase of the daily ridership compared to last year.(Korean Economics '09.01.21) Seoul subway systems ridden by a considerable number of Seoul citizens place their top priority on swiftness, safety and clean underground air quality so as to meet the customer satisfaction. One of the most important problems is to eliminate minute dust(PM10) among the pollutants such as the gas attributable to air pollution and floating particulate matter defined by the ordinance of the Ministry of Environment. Seoulmetro install and operate many kinds of air filtration facilities, however we've launched a research on "Standardization Plan on Underground Air Filtration Facility" for the installation and improvement of optimum standardized air filtration system. As a preliminary study, we're going to consider ventilation system and air filter to supply filtered metropolitan outdoor air aimed at ensuring clean underground environment.

  • PDF

Correlation between total air pollutant emissions and incidence of type 1 diabetes in the Russian Federation

  • Choi, Hoon Sung;Kim, Jin Taek;Seo, Ji-Young;Linkov, Faina;Shubnikov, Evgeniy;Lee, Hong Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.10
    • /
    • pp.525-530
    • /
    • 2021
  • Background: Exposure to air pollution (gaseous pollutants and/or particulate matter) has been associated with the incidence, prevalence, and mortality of type 1 diabetes (T1D). Purpose: To examine the quantitative relationship between air pollutant emissions and the incidence of T1D. Methods: We examined the association between the incidence of T1D and type 2 diabetes (T2D) in 2017 as well as that of T1D in patients younger than 15 years in 2016 with "emissions of air-polluting substances from stationary and mobile sources by regions of the Russian Federation in 2016" as reported by the Federal Diabetes Register of Russia downloaded from the Russian government website (http://www.mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/). Results: The incidence of T1D across all ages in each region of the Russian Federation correlated with the total air pollutants emitted in the region each year (r=0.278, P=0.013). The incidence of T2D was also correlated with the amount of air pollutants (r=0.234, P=0.037) and the incidence of T1D (r=0.600, P<0.001) in each country. Similarly, the incidence of T1D in patients younger than 15 years correlated with the total air pollutants emitted each year in each region (r=0.300, P=0.011). Conclusion: The quantitative relationship between the total air pollutants emitted and the incidence of T1D and T2D in the Russian Federation suggests that air pollution contributes to the development of T1D and T2D.

Mathematical Programming for Air Pollution Control in Pusan (부산시 대기오염방지를 위한 수리계획법)

  • 이창효
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.229-241
    • /
    • 1996
  • This study was performed to find the most desirable emission reduction for each mobile source pollutant and the optimal control strategy at a given level of expenditures in Pusan City in 2000 by using the interactive s-constraint method developed by Chang-Hyo Lee and Hyung-Wook Kim, which isone of the mathematical programming models. The most desirable emission reduction is 7093 ton/year for particulate (TSP), 4871 ton/year for NOx, 5148 ton/year for HC and 36779 ton/year for CO. The optimal control strategy is as follows; 1. As to passenger car and taxi, limiting VKT (vehicle kilometers travelled) in congested areas will be necessary. In addition to this, improving vehicie inspection Program should be enforced. 2. As to small-gasoline bus, traffic adaptive control system will be necessary. 3. As to small-diesel bus, non-adjustable engine parameters will have to be applied. .4. As to heal bus and heart truck, catalytic trap oxidizer and limiting VKT in congested areas will do necessary. 5. As to motorcycle, 2-cycle motorcycles should be converted to 4-cycle motorcycles.

  • PDF

A Performance Prediction of Diesel Engine with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 디젤기관 성능해석)

  • Moon, Byung-Chul;Oh, Young-Suk;Park, Kyi-Yeol;Kang, Kum-Won;Lee, Tae-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.95-100
    • /
    • 2005
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. This research focused on engine performance characteristics with the application of a continuous regeneration diesel particulate filter and EGR together in a heavy duty vehicle, and gives some suggestions on the direction of designing points of view by comparing the experimental data with numerical results which were obtained through KIVA-3V.

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Study on the Air Quality of Metropolitan Subway Stations (수도권 지하철 지하역사의 실내공기질 연구)

  • Cho Young-Min;Park Duckshin;Park Byung-Hyun;Park Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.77-82
    • /
    • 2005
  • Recently, people's rising interests toward a 'well-being' lifestyle together with research contributions are accelerating the concerns regarding indoor air pollution making indoor air quality management an emerging environmental challenge of the era. The Ministry of Environment began to regulate the air quality of railway stations last year. The newly established 'Indoor Air Quality Act' covers 17 facilities whereas only underground subway stations and underground markets were regulated by previous 'Underground Air Quality Management Act' of 1996. In this study, we carried out the measurement of temperature, relative humidity, CO(carbon monooxide), $CO_2$(carbon dioxide), HCHO(formaldehyde), PM-10(particulate matters), and VOCs(volatile organic compounds) in underground subway stations. Based on the obtained results, we will suggest a way to improve the indoor air quality of the subway stations.

  • PDF

The Measurement of the Indoor Air Quality in KTX Train (KTX 객실내 공기청정도 측정)

  • So, Jin-Sub;Lee, Sung-Uk;Park, Duck-Shin;Yoo, Seong-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1210-1213
    • /
    • 2006
  • Indoor air quality is an important determinant of human health and comfort. However, the complexity of pollution sources and the multitude of parties responsible for creating indoor exposures makes the improvement of air quality difficult. The KTX HVAC(Heating, Ventilating and Air-Conditioning) system is important facility to provide comfortable environment passenger service. The Ministry of Environment is planning to enforce$\square\square$Indoor Air Quality Management law in Public Facilities$\square\square$in year 2008. Hereupon, the train and the subway are included. In this research air quality in the KTX Train compartment has measured. As a result, The average amounts of PM10(particulate matters), $CO_2$(carbon dioxide)measured $20{\mu}g/m^3$, 1,097ppm in KTX respectively. There are compare to regulation the value is 10% for PM10 and 43% for $CO_2$. Thus, the indoor air quality of KTX train have been proved satisfy the recommendation the Ministry of Environment guidelines.

  • PDF

Air pollution study using factor analysis and univariate Box-Jenkins modeling for the northwest of Tehran

  • Asadollahfardi, Gholamreza;Zamanian, Mehran;Mirmohammadi, Mohsen;Asadi, Mohsen;Tameh, Fatemeh Izadi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.233-246
    • /
    • 2015
  • High amounts of air pollution in crowded urban areas are always considered as one of the major environmental challenges especially in developing countries. Despite the errors in air pollution prediction, the forecasting of future data helps air quality management make decisions promptly and properly. We studied the air quality of the Aqdasiyeh location in Tehran using factor analysis and the Box-Jenkins time series methods. The Air Quality Control Company (AQCC) of the Municipality of Tehran monitors seven daily air quality parameters, including carbon monoxide (CO), Nitrogen Monoxide (NO), Nitrogen dioxide ($NO_2$), $NO_x$, ozone ($O_3$), particulate matter ($PM_{10}$) and sulfur dioxide ($SO_2$). We applied the AQCC data for our study. According to the results of the factor analysis, the air quality parameters were divided into two factors. The first factor included CO, $NO_2$, NO, $NO_x$, and $O_3$, and the second was $SO_2$ and $PM_{10}$. Subsequently, the Box- Jenkins time series was applied to the two mentioned factors. The results of the statistical testing and comparison of the factor data with the predicted data indicated Auto Regressive Integrated Moving Average (0, 0, 1) was appropriate for the first factor, and ARIMA (1, 0, 1) was proper for the second one. The coefficient of determination between the factor data and the predicted data for both models were 0.98 and 0.983 which may indicate the accuracy of the models. The application of these methods could be beneficial for the reduction of developing numbers of mathematical modeling.