• Title/Summary/Keyword: Particular Solution

Search Result 1,089, Processing Time 0.027 seconds

Dynamic simulation models for seismic behavior of soil systems - Part II: Solution algorithm and numerical applications

  • Sahin, Abdurrahman
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.169-193
    • /
    • 2015
  • This paper is the second part of the study for determining the seismic behavior of soil systems. The aim of this part is to present solution approaches for determining seismic site amplification. For this purpose, two solution techniques are used. The first technique is equivalent linear analysis which is mostly used in literature. The other technique is real time parameter updating approach and this approach uses the possibilities of Simulink effectively. A graphical user interfaced (GUI) program called DTASSA standing for Discrete-Time Analysis of Seismic Site Amplification is developed. In DTASSA, automatic block diagram producing system is developed and seismic site amplification for multiple soil layers may easily be investigated in real time. Numerical applications have been carried out to check the reliability of developed algorithm. The results of DTASSA are compared with SUA, EERA and NERA programs for the particular example problems.

Inviscid Rotational Flows Near a Corner and Within a Triangle

  • Suh, Yong-Kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.813-820
    • /
    • 2001
  • Solutions of inviscid rotational flows near the corners of an arbitrary angle and within a triangle of arbitrary shapes are presented. The corner-flow solutions has a rotational component as a particular solution. The addition of irrotatoinal components yields a general solution, which is indeterminate unless the far-field condition is imposed. When the corner angle is less than 90$^{\circ}$the flow asymptotically becomes rotational. For the corner angle larger than 90$^{\circ}$it tends to become irrotational. The general solution for the corner flow is then applied to rotational flows within a triangle (Method I). The error level depends on the geometry, and a parameter space is presented by which we can estimate the error level of solutions. On the other hand, Method II employing three separate coordinate systems is developed. The error level given by Method II is moderate but less dependent on the geometry.

  • PDF

Planar plastic flow of polymers near very rough walls

  • Lyamina, Elena A.;Date, Prashant P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.707-718
    • /
    • 2016
  • The main objective of the present paper is to investigate, by means of a boundary value problem permitting a semi-analytic solution, qualitative behaviour of solutions for two pressure-dependent yield criteria used for plastically incompressible polymers. The study mainly focuses on the regime of friction (sticking and sliding). It is shown that the existence of the solution satisfying the regime of sticking depends on other boundary conditions. In particular, there is such a class of boundary conditions depending on the yield criterion adopted that the regime of sliding is required for the existence of the solution independently of the friction law.

Generalized curved beam on elastic foundation solved by transfer matrix method

  • Arici, Marcello;Granata, Michele Fabio
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.279-295
    • /
    • 2011
  • A solution of space curved bars with generalized Winkler soil found by means of Transfer Matrix Method is presented. Distributed, concentrated loads and imposed strains are applied to the beam as well as rigid or elastic boundaries are considered at the ends. The proposed approach gives the analytical and numerical exact solution for circular beams and rings, loaded in the plane or perpendicular to it. A well-approximated solution can be found for general space curved bars with complex geometry. Elastic foundation is characterized by six parameters of stiffness in different directions: three for rectilinear springs and three for rotational springs. The beam has axial, shear, bending and torsional stiffness. Numerical examples are given in order to solve practical cases of straight and curved foundations. The presented method can be applied to a wide range of problems, including the study of tanks, shells and complex foundation systems. The particular case of box girder distortion can also be studied through the beam on elastic foundation (BEF) analogy.

Fluid and Heat Transfer Characterization of Surfactant Turbulent Pipe Flows (계면활성제가 첨가된 관내 난류의 열유동 특성에 관한 고찰)

  • Shin, Kwang-Ho;Yoon, Hyung-Kee;Chang, Ki-Chang;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.982-987
    • /
    • 2006
  • The fluid mechanics and heat transfer of surfactant turbulent pipe flows are characterized with particular emphasis on the effects of surfactant concentration and solution temperature on drag reduction and heat transfer reduction. The test fluids are the surfactant solutions of DR-IW616 supplied by Akzo Nobel Chemical in concentration of $100{\sim}3000ppm$. The solution temperatures studied are $5^{\circ}C$ to $50^{\circ}C$. The critical values of surfactant concentration and solution temperature are clearly identified for drag reduction phenomena.

  • PDF

Reinterpretation and visualization of Omar-Khayyam's geometric solution for the cubic equation - 6 cases of the cubic equation with 4 terms - (삼차방정식에 관한 Omar Khayyām의 기하학적 해법의 재해석과 시각화 - 항이 4개인 삼차방정식의 6가지 -)

  • Kim, Hyang Sook;Kim, Mi Yeoun;Sim, Hyo Jung;Park, Myeong Eun
    • East Asian mathematical journal
    • /
    • v.37 no.4
    • /
    • pp.499-521
    • /
    • 2021
  • This research is devoted to investigate Omar Khayyām's geometric solution for the cubic equation using conic sections in the Medieval Islam as a useful alternative connecting logic geometry with analytic geometry at a secondary school. We also introduce Omar Khayyām's 25 cases classification of the cubic equation with all positive coefficients. Moreover we study 6 cases with 4 terms of 25 cubic equations and in particular we reinterpret geometric methods of solving in 2015 secondary Mathematics curriculum and visualize them by means of dynamic geometry software.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

Generalized Inverses and Solutions to Equations in Rings with Involution

  • Yue Sui;Junchao Wei
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, we focus on partial isometry elements and strongly EP elements on a ring. We construct characterizing equations such that an element which is both group invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when these equations have a solution in a given set. In particular, an element a ∈ R# ∩ R is a partial isometry element if and only if the equation x = x(a)*a has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. An element a ∈ R#∩R is a strongly EP element if and only if the equation (a)*xa = xaa has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. These characterizations extend many well-known results.

EXISTENCE OF A POSITIVE SOLUTION TO INFINITE SEMIPOSITONE PROBLEMS

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • We establish an existence result for a positive solution to the Schrödinger-type singular semipositone problem: $-{\Delta}u\,=\,V(x)u\,=\,{\lambda}{\frac{f(u)}{u^{\alpha}}}$ in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN , N > 2, λ ∈ ℝ is a positive parameter, V ∈ L(Ω), 0 < α < 1, f ∈ C([0, ∞), ℝ) with f(0) < 0. In particular, when ${\frac{f(s)}{s^{\alpha}}}$ is sublinear at infinity, we establish the existence of a positive solutions for λ ≫ 1. The proofs are mainly based on the sub and supersolution method. Further, we extend our existence result to infinite semipositone problems with mixed boundary conditions.

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.