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Inviscid Rotational Flows Near a Corner and Within a Triangle

Yong Kweon Suh*
School of Mechanical and Industrial System Engineering, Dong-A University

Solutions of inviscid rotational flows near the corners of an arbitrary angle and within a
triangle of arbitrary shapes are presented. The corner-flow solution has a rotational component
as a particular solution. The addition of irrotatoinal components yiclds a general solution,
which is indeterminate unless the far-field condition is imposed. When the corner angle is less
than 90° the flow asymptotically becomes rotational. For the corner angle larger than 90° it

tends to become irrotational. The general solution for the corner flow is then applied to

rotational flows within a triangle {Method 1). The error level depends on the geometry, and a
parameter space is presented by which we can estimate the error level of solutions. On the other
hand, Method II employing three separate coordinate systems is developed. The error level given
by Method 11 is moderate but less dependent on the geometry.
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1. Introduction

Recently there has been an increased interest in
the spin-up of fluids in non-axisymmetric
containers such as rectangles (van Heijst, 1989;
van Heijst, Davies and Davis, 1990; van Heijst,
Maas and Williams, 1994; van de Konijnenberg,
Wessels and van Heijst, 1996; van de
Konijnenberg and van Heijst, 1996, 1997; Suh,
1994: Suh and van Heijst, 2000). In this case the
starting flow, governed by a uniform vorticity
{twice the angular speed of the container),
separates from side walls immediately after
rotation. The boundary-layer separation in turn
causes gathering of vorticity near each corner, and
the corner eddy is thus generated. The corner
eddies play crucial a role in the subsequent flow
dynamics and mixing within the container (van
de Konijnenberg and van Heijst, 1996).

The fundamental question in this case would

be: what is the basic mechanism of the corner-
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eddy generation and can we predict the eddies’
growth rate? The present study has been
motivated by the need of finding asymptotic
solutions of a rotational flow field near a corner
given at the very beginning of the spin-up pro-
cess. In fact, the solution is a prerequisite for
modelling of the corner-flow separation.

The corner-flow solution is then used as a basis
in obtaining the rotational flow inside a triangu-
lar domain. The solution is important in itself.
However, it also serves as an example that
contains a corner and shows the asymptotic na-
ture predicted by the corner-flow analysis. The
solutions for the triangular domain are further
validated by comparing them with those given by
a second method,

A two-dimensional rotational flow driven by a
uniform vorticity near a 90°-corner flow has
already been considered by Moore, Saffman and
Tanveer (1988). Their interests were in obtaining
the steady separated flow using Batchelor’s model.
Although Batchelor’s model itself is not of our
concern, their solution to the 90°-corner region
will be shown to be a special case of the present
general solution valid for any arbitrary corner
angle. Also, as far as the author knows, no results
have been reported on the rotational flow field
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Fig. 1 Sketch of the corner flow and the Cartesian
coordinates
inside

near corners of arbitrary angles or

triangles.

2. Corner Flows

2.1 Basic solution
We consider a Poisson equation

ip=—2 (n

where ¢ is a stream function, and 72 denotes the
two-dimensional
coordinates (x, y). Here, all of the variables are
dimensionless, and the right-hand side of Eq. (1)
represents the nondimensional counterpart of the
uniform vorticity caused by an abrupt rotation
alout the plane under

Laplacian operator in the

the axis normal to
consideration. The minus sign in (1) stems from
the fact that in most rotating flow experiments the
table’s rotations are counterclockwise so that the
vorticity inducing the relative motion is positive.

As stated in the introduction, our first interest
is a corner of arbitrary angle £ as shown in Fig.
1. Irnpermeable restrictions are used as boundary

conditions on the lower and upper walls;
¢=0 on y=0 and y=max, (2)
where mi= tan § is the slope of the upper
boundary.
The particular solution to Egs. (1) and (2) are

¢p=—y(y—mx), or in terms of the polar
coordinates (7, &),

Pp= —%?’2(1 —cosZﬁ)—%mrzsinzﬂ (3)

2.2 An example of general solution

Although the solution above satisfies both Eqgs.
{1} and (2), we can consider adding to Eq. (3) an
infinite number of complementary solutions ¢

satisfying the Laplace equation 2¢,=0 and the
impermeable conditions in Eg. (2). One example
with no singularity in the field is a class of
functions

dn=r"sinknd
for an arbitrary integer £21. Here, n=x/f. Asa
special case, we choose the smallest number, k=
1. Then a complete solution takes the form

gb=—%r2(lucoszﬂ)

—é—m ’sin2d+ Cr sinnd 4

where C is an arbitrary constant. (We will see
shortly that with this choice the solution for the
critical case, #=m/2, can be effectively obtained.)

The addition of the complementary solution
can give rise to a cellular flow pattern near the
corner. The size of the cell may be represented by
#o(i.e. the value of » at #=0) at which 3¢/»38,
the radial velocity component, vanishes; thus, the
point at ¥=7, may be called the detachment
point. Taking the derivative of Eq. (4) with re-
spect to &, evaluating at #—0 and setting the
result zero gives the relation between # and C as
follows.

C="Tr" (5)

Substituting this back into Eq. (4) then yields the
corner-flow solution having a detachment point
on the lower wall at y=1w.

In the following, we consider two special cases,
at which #z becomes infinite (#=2) or the cell
tends to an equilateral triangle (x#=3).

At »=2, m becomes infinite, and the second
and third terms in Eq. (4) also tend to infinity.
However it can be shown that in the limit z—2,
the two terms after being summed can be reduced
to a regular function. In this case Eq. {(4) takes the
following form.

__1 2[ _ 2
¢= Tk 1 c0528+z

{Clny/7—Dsin20+2 GCOSZH}] {6}

This corresponds to the solution given by Moore
et al. (1988). If the complementary solution C#”"
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n@ were not included in Eq. (4), no regular sol-
ution can be obtained for the critical case n=2.

For #=3, the slope m is /3, and Eq. (4
becomes simply

¢g=—y(y—32)(1—x—y/V3) (7)

Here #=1
generality. Thus ¢ is also zero on the straight line
x+y//3=1. This means that the solution Eq. (7)
corresponds to the starting flow within an
equilateral triangle of unit side length. The solu-
tion was also given by Milne-Thomson (1968).

We also note that m=0 for =1, and the
solution in this case simply becomes a shear flow,
g=—3

We are further interested in 7., the value of »
at the centerline 8§=4/2, at which ¢=0. This
corresponds to the radial distance along the
centerline from the corner to the boundary of the
cell. It can be shown that

is assumed without the loss of

1/(n-2)
e )

for #+2 and

re=rnexp{(2— m)/4}
for n=2. In fact #, decreases monotonously with
Bfrom re=7 at f§=0to r.=0at f=r, the latter
corresponding to an infinitely thin cell.

Figure 2 shows typical solutions for four corner
angles. We can see that for (a) and (b) (n<3),
the detaching streamline is convex and for (d)
(n>3), it is concave relative to the corner. As
analysed previously, at the critical value n=3,
(c), the detaching streamline becomes straight.

2.3 Asymptotic Nature of the Corner Flow

The general sclution Eq. (4) is of a special
kind, and we can consider adding r*"sinkné
with &> 1. In fact the importance of each mode is
related to the flow condition in the region far
from the corner. A good example is the flow
within a triangle which will be analysed in the
following section. However, for a concave corner
(i.e. for #>>1), the asymptotic nature of flows in
the region »—0 is not affected by the terms with
kE>1

More importantly, the asymptotic nature is

{d) n=6

Fig. 2 Streamlines in corners for four » values.
Ag=0.005

fundamentally different depending on whether »
is larger or smaller than 2. For »n<2, the
dominant term in Eq. (4) is Cr™sinnd. Thus, the
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asymptotic corner-flow is governed primarily by
the far-flow condition. This means that the corner
flow is asymptotically of the irrotational type. On
the other hand, for »>2, the dominant terms of
Eq. (4) are of O(#?), and thus it is not affected by
the far-flow condition. Thus, the corner flow is
asymptotically of the rotational character. Such
observations are important for modelling the
starting rotational flow in containers having
corners.

3. Flows Within a Triangle

3.1 Method I

Using ¢ the particular solution for the corner,
i.e. Eq. (3), as a basis, we can write the solution
of Eq. (1} for a triangular domain as

b= ot ;?1 Corsinknd ©)

where C, denotes arbitrary constants to be deter-
mined such that the impermeable condition on the
third boundary

¢=0 on r=r.{8) (10)
is satisfied. The function #:(§) defined as

rorising
rsin@+ »sin( S — ) an
represents the straight line constituting the third
boundary P, and #» is the length of the
boundary OQ (Fig. 3).
For Eq. (9) to satisfy Eq. (10} in a least square
sense, we multiply both sides of Eq. (9) by #™'sin

T¢(6)=

jn@, apply »=17r.{8), and integrate over the range
0< &= {8 to obtain the following linear system of
equations.

Ajjok:Bj (], k:l, 2, ey K) (12)

where
ﬂ k+ ‘) . . .
Ap= A i M ainkn Osingn d6

2
B,-:—j; o ¥e, )rsingnodo

The system of equation in Eq. (12} is sclved by
using the LU-decomposition method.

3.2 Method II
A second method for solving Eq. (1) under the

X

8] ¥ P

Fig. 3 Sketch of the rotational flow within a triangle
and the Cartesian coordinates

Q

O X, P

Fig. 4 Three separate coordinate systems for Method
I

boundary conditions Eqs. (2} and (10) has been
developed. Tt uses three separate coordinate
systems (x1, ¥1), (X2, ¥2), and (xa, ¥s) with origins
at the corresponding apex O, P and Q, respective-
ly, and aligned as shown in Fig. 4. The {th side
having length /; lies on the x;-axis, and the
distance from the side to the apex not lying on the
side is denoted as d;.
Then the solution ¢ can be written as

3

b=dot 2 (13)
where

o=y —d)

Ki

¢i=§10wsinh{kﬁ(di_ vi)/ L}sin(kmx./ 1)
Note that ¢% is a particular solution written in
terms of (x1. y1), and ¢y the complementary solu-
tion written in terms of (x;, y:). Also Eq. (13)
gives ¢=0 at three apex.

To obtain @, we require ¢=0 on each boundary
and use the Fourier expansion method. For in-
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stance, on side 2, the corresponding equation is

k}'{:l ansinh(knds/ Bisinkres/ )= — dolxz, 0)
““:_g;a(ﬁi(xi(xz, 0), vi(x2, ) (14)

This again reduces to a linear system similar to
Eq. (12) for the unknowns @2s when both sides
are multiplied by sinpmrs/lk, where p is an
integer, and integrated over 0<x:</ The
unknowns ¢, and ase contained implicitly in the
righthand side of Eq. (14) are assumed to be
known, and an iteration method is used to obtain
the converged values of aa. To evaluate the
righthand side of Eq. (14), we must know the
relationship between (x2, 32} and (x: y;). This
relation can be established in two steps: (xz, y2)—
(X, Y'Y= (x:, v:), where (X, V) are the global
coordinates, which may be the same as (x;, 1),
and the equation of transformation in each step
can be obtained easily.

33 Numerical results

Figure 5 shows typical results given by Method
I with A/=10 for three shapes. The second case
(b) in principle can be obtained directly by using
Eq. (4}, but here it is calculated from Eq. (3) with
A very close to /2.

The first two solutions are reasonable. These
patterns are invariant if K is increased to 20 or
decreased to 5. However, case (¢) shows wiggles
near the third boundary (line PQ) on which the
Fourier expansion method is applied to obtain
@ The pattern does not improve even if K is
increased significantly. The reason for this irreg-
ular pattern is not clear, but it commonly occurs
when the difference between corner angles at P
and Q is quite large. However, a smooth, reason-
able solution to this case can be obtained when
the side OP is taken as the third boundary instead
of PQ. The resulting pattern is the same as that in
{a). In fact, the parameters for (c¢) are chosen so
that the triangle is congruent with (a).

The wiggles shown in Fig. 5(c) are directly
related to the fact that the boundary condition on
the third boundary is not satisfied. Thus, as a
quantity measuring such wiggles, it is natural to

Q

(¢} f=24.5", B=1.709, #=0.849
Fig. 5 Streamlines obtained by Method I for three
cases. J¢=0.002

introduce ¢. defined as

_ 1
be=arfleldl (15)

where [ denotes the coordinate along the whole
path of the three sides and /; the total length. The
guantity is referenced to area A because the
representative value of ¢(e.g. the maximum value
of |¢|) is of O(A). Of course the exact
proportionality holds only when the triangles are
similar,

Figure 6 shows the distribution of ¢ in the
parameter space (Xg, V), the coordinates of the
apex Q, calculated for »;=1. As mentioned
above, the errors are greater in the region where
the two corner angles on both edges of the third
boundary are larger, e.g. ¥o<0.2, 0.1 <x¢<0.7.
Therefore, to obtain a reasonable solution by
Method 1, care must be given to selecting a proper
choice of (xg, ¥g), as implied in Fig. 5(c). For
instance the geometry of Fig. 5{c) after being
scaled by a facton of 1.709 gives (xq, ¥q)=(0.452,
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Fig. 6 Distribution of ¢, in the parameter space (xq,
¥¢) obtained by Method I; »y=1. The level
number indicates —loge¢e

Fig. 7 Six subregions associated with the similarity

relations between triangles

0.205). This parameter set is indeed in the region
of relatively high error (Fig. 6). We can find two
triangles similar to this one, while the third apex
QQ spans the space, the apex O and P being fixed
at (0, 0) and (0, 1) respectively. The first similar
triangle has its apex Q" on the extended line PQ
with PQ'==1/PQ, and is called the inverse
mapping based on P (hereinafter referred to as
Iz). The second one has its apex Q' on the
extension of OQ with OQ'=1/0Q, which is called
the inverse mapping based on O (hereinafier
referred to as [); The two are symmetric with
respect to the line x=1/2(called the horizontal
mapping; H). The first one corresponds to Fig. 5

L EEEREEE
2 3 4 5

2.5

-

0.5 0 05 1.5 2
Xa
Fig. 8 Distribution of ¢ in the parameter space (X,
Ye) obtained by Method II. j=1. The level
number indicates — loge¢e

1

(a), and this gives a reasonable solution. However
the latter results in relatively high error as can be
checked from Fig. 6.

Using the above notations, and referring to Fig. 7
we now show that the finite region A; can pro-
duce all the possible shapes of triangles. As can
be seen from Fig. 7, all regions other than A, can
be mapped to A, as follows.

A —H . p,
Be g L a,
Ce —H o, I, 4,

The region A, is selected as the reference because
it gives the least error as can be seen in Fig. 6
However, the region close to the circle gr and the
origin has larger errors than the horizontally
symmetric one near the circle gg(Fig. 6).
Compared with Method I, Method 11 provides
more evenly distributed ¢, as shown in Fig. 8.
However, the overall error level is rather high,
and the regions of slow convergence or no con-
vergence (black region in the figure) exist.
Figure 9 shows level plots of ¢ obtained by
Method Il for the three cases in Fig. 5. We note
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Fig. 9 Streamlines obtained by Method II for the
three triangles of Fig. 5{(a), (b}, and (c). A=
0.002

slight wiggles near the corners in all cases.
However, (c) looks remarkably smoother than
Fig. 5(c).

Conclusively, Method IT gives solutions of
moderate errors, and the error level is uniform
over the space (Xo, Yo). However more accurate
solutions can be obtained by using Method L

4. Conclusive Remarks

Inviscid rotational flow near a corner can be
described by a simple analytic solution. The so-
lution reveals two types of asymptotic behavior
depending on the corner angle 8. For §>>90°, the
far-flow condition prevails the asymptotic flow in
the corner, and for §<90° it is independent of
the far-flow condition.

The flow within a triangle was described by the
corner-flow solution containing both rotational
and irrotational componerts. Aside from the im-
portance in itself, the solution serves as an exam-

ple of using the corner-flow solution in analysing
the asymptotic flow structure near the corners of
polygonal domains.

Since two methods employing different coordi-
nate systems exhibit basically identical solutions,
we can infer that both solution methods presented
in this paper are reliable.
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