• 제목/요약/키워드: Particle Morphology

검색결과 772건 처리시간 0.024초

Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰 (LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy)

  • 김황수
    • Applied Microscopy
    • /
    • 제37권2호
    • /
    • pp.123-133
    • /
    • 2007
  • Al합금(Al-2.5Cu-1.5Mg wt.%)의 석출물 특히 S-상석출입자 $(Al_2CuMg)$ 부근의 변형장 (strain fields)에 대해 LACBED 관찰 연구가 처음으로 수행되었다. 변형장 강도에 대한 정량적 분석을 위해서는 대응되는 LACBED패턴 시뮬레이션 필요하다. 이를 위해 S-입자에 대해서 형태가 단순한 $a_s$-축을 가진 원기둥 모양을 갖고 변형장의 격자변위 벡터가 이 축에 수직 방향을 갖는다고 가정했다. 이런 단순한 모델을 가지고 변형장에 대한 관찰 패턴과 시뮬레이션 사이 합리적인 일치를 얻었다. 그러나 합금의 초기 시효 단계에서는 의미 있는 변형장이 관측되지 않았다. 따라서 이 실험의 결과로 예상되는 것은 합금의 최대 경도를 갖는 시료에는 S-상 석출 입자들이 Al-모체에 복잡한 변형장 그물망을 만들고 이것이 합금 경도에 기여 할 것으로 사료된다.

전해도금법으로 형성한 Ni-SiC 복합피막층의 특성 (Properties of Ni-SiC Composite Coating Layers Prepared by Electroplating Method)

  • 이홍기;손성호;이호영;구석본;전준미
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.160-165
    • /
    • 2006
  • Ni-SiC composite coating layers were prepared by electroplating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. It was found that the deposition rate and the codeposition of SiC in the composite coating layer increased with increasing concentration of SiC in the solution only at the early stage. Both of them reached certain maxima and then decreased with increasing concentration of SiC. Rough surface was obtained with increasing codeposition of SiC, which is probably due to the agglomeration of the SiC particle in the vicinity of surface. Vickers hardness increased with increasing codeposition of SiC and heat treatment at $300^{\circ}C$ in air for 1 hour. Wear volume decreased with increasing codeposition of SiC and friction coefficient increased with increasing codeposition of SiC at the early stage, and it became almost constant. Such wear and friction behaviors are desirable for the practical application.

$TiO_2$ 두께에 따른 염료감응형 태양전지의 효율 변화 (The Effect of $TiO_2$ Thickness on the Performance of Dye-Sensitized Solar Cells)

  • 김대현;박미주;이성욱;최원석;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-148
    • /
    • 2007
  • Dye-sensitized solar cell using conversion of solar energy to electrical energy appeared that which solves a environmental matter. The dye-sensitized solar cell uses nano-crystalline oxide semiconductor for absorbing dye. The $TiO_2$ is used most plentifully. The efficiency of the dye-sensitized solar cell changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. In this paper, we report The effect of titania$(TiO_2)$ thickness on the performance of dye-sensitized solar cells. Using doctor blade method, It produced the thickness of the $TiO_2$ with $7\;{\mu}m,\;10\;{\mu}m,\;13\;{\mu}m$. The efficiency was the best from $10{\mu}m$. It had relatively low efficiency on the thickness from $7\;{\mu}m\;to\;13\;{\mu}m$. The reason why it presents low efficiency on $7\;{\mu}m$ thickness is that excited electrons can not be delivered enough due to thin thickness of $7\;{\mu}m\;TiO_2$. And The reason why it presents low efficiency on $13\;{\mu}m$ thickness is that thick $13\;{\mu}m\;TiO_2$ can not penetrate the sunlight enough.

  • PDF

Amphiphilic graft copolymers: Effect of graft chain length and content on colloid gel

  • Nitta, Kyohei;Kimoto, Atsushi;Watanabe, Junji;Ikeda, Yoshiyuki
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권2호
    • /
    • pp.97-109
    • /
    • 2015
  • A series of amphiphilic graft copolymers were synthesized by varying the number of graft chains and graft chain lengths. The polarity of the hydrophobic graft chain on the copolymers was varied their solution properties. The glass transition temperature of the copolymers was in the low-temperature region, because of the amorphous nature of poly (trimethylene carbonate) (PTMC). The surface morphology of the lyophilized colloid gel had a bundle structure, which was derived from the combination of poly(N-hydroxyethylacrylamide)( poly(HEAA)) and PTMC. The solution properties were evaluated using dynamic light scattering and fluorescence measurements. The particle size of the graft copolymers was about 30-300 nm. The graft copolymers with a higher number of repeating units attributed to the TMC (trimethylene carbonate) component and with a lower macromonomer ratio showed high thermal stability. The critical association concentration was estimated to be between $2.2{\times}10^{-3}$ and $8.9{\times}10^{-2}mg/mL$, using the pyrene-based fluorescence probe technique. These results showed that the hydrophobic chain of the graft copolymer having a long PTMC segment had a low polarity, dependent on the number of repeating units of TMC and the macromonomer composition ratio. These results demonstrated that a higher number of repeating units of TMC, with a lower macromonomer composition, was preferable for molecular encapsulation.

구아노신일인산의 결정화에 대한 수용성 고분자의 영향 (Influence of Water Soluble Polymers on Crystallization of 5-Guanosine Monophosphate)

  • 이민경;최혜민;김우식;홍종팔;이종휘
    • 폴리머
    • /
    • 제33권2호
    • /
    • pp.124-130
    • /
    • 2009
  • 고분자를 저분자 유기물질의 결정화 과정에 사용하면 결정형성과정을 중간 단계, 즉 메조크리스탈 단계에서 멈출 수 있다. 메조크리스탈은 수백 나노미터-수 마이크로미터의 결정들이 스스로 배열되어 결정성을 갖는, 결정과 고분자의 복합초구조로 정의할 수 있다. 본 연구에서는 구아노신일인산의 메조크리스탈 형성에서 고분자의 영향과 그와 관련된 변수들에 대해 알아 보았다. OM과 SEM 분석을 통해 고분자유도 결정화에 의한 GMP 결정은 전형적인 GMP입자와는 다른 모폴로지를 보임을 확인하였고, XRD 분석을 통해 새로운 polymorph를 가짐을 확인하였다. 이러한 결과는 고분자에 의해 GMP의 결정구조가 달라졌음을 의미하며, 결정 안에 함유되는 물의 함량이 달라져 다른 수화물 구조를 보임을 TGA 분석을 통해 확인하였다.

볼 밀의 분쇄장에서 DEM 시뮬레이션을 통한 마찰계수 영향 (Effect of Friction Coefficient from DEM Simulation in Grinding Zone of the Ball Mill)

  • 자갈사이항 바트체첵;보르 암갈란;오란치멕 쿨란;이재현;최희규
    • 한국재료학회지
    • /
    • 제31권5호
    • /
    • pp.286-295
    • /
    • 2021
  • This study attempts to find optimal conditions of the friction coefficient using a discrete element method (DEM) simulation with various friction coefficient conditions and three different grinding media with various ball sizes in a traditional ball mill (TBM). Using ball motion of the DEM simulation are obtained using the optimal friction coefficient compared with actual motion; photographs are taken by the digital camera and the snapshot images are analyzed. In the simulation, the rotation speed of the mill, the materials and velocity of the grinding media, and the friction coefficient between the balls and the wall of the pot are fixed as the actual experimental conditions. We observe the velocity according to the friction coefficient from the DEM simulation. The friction coefficient is found to increase with the velocity. Milling experiments using a traditional ball mill with the same experimental conditions as those of the DEM simulation are conducted to verify the simulated results. In addition, particle morphology change of copper powder is investigated and analyzed using scanning electron microscopy (SEM) for the milling experiment.

Apoptosis and inhibition of human epithelial cancer cells by ZnO nanoparticles synthesized using plant extract

  • Koutu, Vaibhav;Rajawat, Shweta;Shastri, Lokesh;Malik, M.M.
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.233-240
    • /
    • 2019
  • The present research work reports in-vitro anti-cancer activity of biologically synthesized ZnO nanoparticles (ZnO NPs) against human carcinoma cells viz SCC-40, SK-MEL-2 and SCC-29B using Sulforhodamine-B (SRB) Assay. ZnO NPs were synthesized by a unique and novel biological route using Temperature-gradient phenomenon where the extract of combination of Catharanthus roseus (L.) G. Don (C. roseus), Azadirachta indica (A. indica), Ficus religiosa (F. religiosa) and NaOH solution were used as synthesis medium. The morphology of the ZnO NPs was characterized by Transmission Electron Microscopy (TEM). TEM images reveal that particle size of the samples reduces from 76 nm to 53 nm with the increase in reaction temperature and 68 nm to 38 nm with the increase in molar concentration of NaOH respectively. XRD study confirms the presence of elements and reduction in crystallite size with increase in reaction temperature and NaOH concentration. The diffraction peaks show broadening and a slight shift towards lower Bragg angle ($2{\theta}$) which represents the reduction in crystallite size as well as presence of uniform strain. The FTIR spectra of the extract show transmittance peak fingerprint of Zn-O bond and presence of bioactive molecules These NPs exhibit inhibition greater than 50% for SCC-40, SK-MEL-2 and SCC-29B cell lines and more than 50% cell kill for SCC-29B cells at concentrations < $80{\mu}g/ml$. Nanoparticles with smallest size have shown better anti-cancer activity and peculiar cell-selectivity. The combination of extracts of these plants with ZnO NPs can be used in targeted drug delivery as an effective anti-cancer agent, a potential application in cancer treatment.

융제 및 Ta5+ 치환이 Lu(Nb,Ta)O4:Eu3+ 형광체의 발광 특성에 미치는 영향 (Effects of Flux and Ta5+ Substitution on the Photoluminescence of Lu(Nb,Ta)O4:Eu3+ Phosphors)

  • 김지원;김영진
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.559-566
    • /
    • 2019
  • $Lu(Nb,Ta)O_4:Eu^{3+}$ powders are synthesized by a solid-state reaction process using LiCl and $Li_2SO_4$ fluxes. The photoluminescence (PL) excitation spectra of the synthesized powders consist of broad bands at approximately 270 nm and sharp peaks in the near ultraviolet region, which are assigned to the $Nb^{5+}-O^{2-}$ charge transfer of $[NbO_4]^{3-}$ niobates and the f-f transition of $Eu^{3+}$, respectively. The PL emission spectra exhibit red peaks assigned to the $^5D_0{\rightarrow}^7F_J$ transitions of $Eu^{3+}$. The strongest peak is obtained at 614 nm ($^5D_0{\rightarrow}^7F_2$), indicating that the $Eu^{3+}$ ions are incorporated into the $Lu^{3+}$ asymmetric sites. The addition of fluxes causes the increase in emission intensity, and $Li_2SO_4$ flux is more effective for enhancement in emission intensity than is LiCl flux. The substitution of $Ta^{5+}$ for $Nb^{5+}$ results in an increase or decrease in the emission intensity of $LuNb_{1-x}Ta_xO_4:Eu^{3+}$ powders, depending on amount and kind of flux. The findings are explained using particle morphology, modification of the $[NbO_4]^{3-}$ structure, formation of substructure of $LuTaO_4$, and change in the crystal field surrounding the $Eu^{3+}$ ions.

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride

  • Hu, Pengwei;Zheng, Dewen;Xian, Yuxi;Hu, Xianhai;Zhang, Qian;Wang, Shanyu;Li, Mingjun;Cheng, Congliang;Liu, Jin;Wang, Ping
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.325-330
    • /
    • 2021
  • Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.

Synthesis, characterization and potential applications of Ag@ZnO nanocomposites with S@g-C3N4

  • Ahmad, Naveed;Javed, Mohsin;Qamar, Muhammad A.;Kiran, Umbreen;Shahid, Sammia;Akbar, Muhammad B.;Sher, Mudassar;Amjad, Adnan
    • Advances in materials Research
    • /
    • 제11권3호
    • /
    • pp.225-235
    • /
    • 2022
  • It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C 3 N 4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.