Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.9.559

Effects of Flux and Ta5+ Substitution on the Photoluminescence of Lu(Nb,Ta)O4:Eu3+ Phosphors  

Kim, Jiwon (Department of Advanced Materials Engineering, Kyonggi University)
Kim, Young Jin (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Korean Journal of Materials Research / v.29, no.9, 2019 , pp. 559-566 More about this Journal
Abstract
$Lu(Nb,Ta)O_4:Eu^{3+}$ powders are synthesized by a solid-state reaction process using LiCl and $Li_2SO_4$ fluxes. The photoluminescence (PL) excitation spectra of the synthesized powders consist of broad bands at approximately 270 nm and sharp peaks in the near ultraviolet region, which are assigned to the $Nb^{5+}-O^{2-}$ charge transfer of $[NbO_4]^{3-}$ niobates and the f-f transition of $Eu^{3+}$, respectively. The PL emission spectra exhibit red peaks assigned to the $^5D_0{\rightarrow}^7F_J$ transitions of $Eu^{3+}$. The strongest peak is obtained at 614 nm ($^5D_0{\rightarrow}^7F_2$), indicating that the $Eu^{3+}$ ions are incorporated into the $Lu^{3+}$ asymmetric sites. The addition of fluxes causes the increase in emission intensity, and $Li_2SO_4$ flux is more effective for enhancement in emission intensity than is LiCl flux. The substitution of $Ta^{5+}$ for $Nb^{5+}$ results in an increase or decrease in the emission intensity of $LuNb_{1-x}Ta_xO_4:Eu^{3+}$ powders, depending on amount and kind of flux. The findings are explained using particle morphology, modification of the $[NbO_4]^{3-}$ structure, formation of substructure of $LuTaO_4$, and change in the crystal field surrounding the $Eu^{3+}$ ions.
Keywords
$LuNbO_4$; luminescence; phosphor; flux; tantalum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Nazarov, Y. J. Kim, E. Y. Lee, K. Min, M. S. Jeong, S. W. Lee and D. Y. Noh, J. Appl. Phys., 107, 103104 (2010).   DOI
2 H. Guo, X. Chi, Y. Wei, H. M. Noh, B. K. Moon, S. H. Park, J. H. Jeong and K. H. Kim, Sci. Adv. Mater., 9, 349 (2017).   DOI
3 Z. Jiang, X. Yu, J. Gou, L. Duan, X. Su, G. Fan and Y. Duan, J. Mater. Sci.: Mater. Electron., 28, 3630 (2017).   DOI
4 L. Dacanin Far, S. R. Lukic-Petrovic, V. Dordevic, K. Vukovic, E. Glais, B. Viana and M. D. Dramicanin, Sens. Actuators, A, 270, 89 (2018).
5 E. Y. Lee, M. Nazarov and Y. J. Kim, J. Electrochem. Soc., 157, J102 (2010).   DOI
6 E. Y. Lee and Y. J. Kim, J. Korean Electrochem. Soc., 12, 234 (2009).   DOI
7 M. Nazarov and D. Y. Noh, New Generation of Europium and Terbium Activated Phosphors, p. 168, Pan Stanford Publishing Pte. Ltd., Singapore (2011).
8 M. H. Im and Y. J. Kim, Mater. Res. Bull., 112, 399 (2019).   DOI
9 M. H. Im, J. Kim and Y. J. Kim, J. Electroceram., 41, 88 (2018).   DOI
10 C. Liu, W. Zhou, R. Shi, L. Lin, R. Zhou, J. Chen, Z. Li and H. Liang, J. Mater. Chem. C, 5, 9012 (2017).   DOI
11 T. Wang, Yi. Hu, L. Chen, X. Wang and M. He, J. Lumin., 181, 189 (2017).   DOI
12 Y. Wu, H. Suo, X. Zhao, Z. Zhou and C. Guo, Inorg. Chem. Front., 5, 2456 (2018).   DOI
13 C. Liu, F. Pan, Q. Peng, W. Zhou, R. Shi, L. Zhou, J. Zhang, J. Chen and H. Liang, J. Phys. Chem. C, 120, 26044 (2016).   DOI
14 A. H. Krumpel, P. Boutinaud, E. van der Kolk and P. Dorenbos, J. Lumin., 130, 1357 (2010).   DOI
15 E. Y. Lee and Y. J. Kim, Electrochem. Solid-State Lett., 13, J110 (2010).   DOI
16 F. Auzel, Chem. Rev., 104, 139 (2004).   DOI
17 X. Wang, X. Li, L. Cheng, S. Xu, J. Sun, J. Zhang, X. Zhang, X. Yang and B. Chen, RSC Adv., 7, 23751 (2017).   DOI
18 M. H. Im and Y. J. Kim, Korean J. Mater. Res., 28, 355 (2018).   DOI
19 X. Wang, X. Li, H. Zhong, S. Xu, L. Cheng, J. Sun, J. Zhang, L. Li and B. Chen, Sci. Rep., 8, 5736 (2018).   DOI
20 X. Wang, X. Li, S. Xu, L. Cheng, J. Sun, J. Zhang, L. Li and B. Chen, Mater. Res. Bull., 111, 177 (2019).   DOI
21 M. H. Im and Y. J. Kim, Luminescence, 34, 500 (2019).   DOI
22 J. Park and Y. J. Kim, Mater. Res. Bull., 96, 270 (2017).   DOI
23 J. M. Jehng and I. E. Wachs, Chem. Mater., 3, 100 (1991).   DOI
24 O. Yamaguchi, K. Matsui, T. Kawabe and K. Shimizu, J. Am. Ceram. Soc., 68, C275 (1985).
25 S. M. Thalluri, M. Hussain, G. Saracco, J. Barber and N. Russo, Ind. Eng. Chem. Res., 53, 2640 (2014).   DOI
26 V. Merupo, S. Velumani, K. Ordon, N. Errien, J. Szade and A. Kassiba, CrystEngComm, 17, 3366 (2015).   DOI
27 C. Regmi, Y. K. Kshetri, R. P. Pandey, T. Kim, G. Gyawali and S. W. Lee, J. Environ. Sci., 75, 84 (2019).   DOI
28 K. P. F. Siqueira, G. B. Carvalho and A. Dias, Dalton Trans., 40, 9454 (2011).   DOI
29 A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash and S. B. Rai, Dalton Trans., 42, 1065 (2013).   DOI