Apoptosis and inhibition of human epithelial cancer cells by ZnO nanoparticles synthesized using plant extract |
Koutu, Vaibhav
(Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology)
Rajawat, Shweta (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology) Shastri, Lokesh (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology) Malik, M.M. (Nanotechnology Research Laboratory, Department of Physics and Nanoscience & Engineering, Maulana Azad National Institute of Technology) |
1 | Zak, A.K., Majid, W.A., Abrishami, M.E. and Yousefi, R. (2011), "X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods", Solid State Sci., 13(1), 251-256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024 DOI |
2 | Mote, V.D., Purushotham, Y. and Dole, B.N. (2016), "Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol-gel method", Mater. Des., 96, 99-105. https://doi.org/10.1016/j.matdes.2016.02.016 DOI |
3 | Ahmad, Z., Laughlin, T.F. and Kady, I.O. (2015), "Thymoquinone inhibits Escherichia coli ATP synthase and cell growth", PloS one, 10(5), e0127802. https://doi.org/10.1371/journal.pone.0127802 DOI |
4 | Arakelova, E.R., Grigoryan, S.G., Arsenyan, F.G., Babayan, N.S., Grigoryan, R.M. and Sarkisyan, N.K. (2014), "In vitro and in vivo anticancer activity of nanosize zinc oxide composites of doxorubicin", Int. J. Med. Heal. Pharm. Biomed. Eng., 8, 33-38. |
5 | Ashrafi, A.A. (2011), In: Encyclopedia of Semiconductor Nanotechnology, (ed. Umar, A.), American Scientific Publishers, Chapter 10, p. 1. |
6 | Bisht, G. and Rayamajhi, S. (2016), "ZnO Nanoparticles: A promising anticancer agent", Nanobiomedicine, pp. 3-9. https://doi.org/10.5772/63437 |
7 | DerMarderosian, A. and Beutler, J.A. (2012), The review of natural products: the most complete source of natural product information, Facts and Comparisons, St. Louis, MO, USA. |
8 | Dhamodarana, M. and Kavithab, S. (2015), "Anticancer Activity of Zinc Nanoparticles Made using Terpenoids from Aqueous Leaf Extract of Andrographis Paniculat", Int. J. Pharmaceut. Sci. Nanotech., 8(4), 3018-3023. |
9 | Fang, J., Fan, H., Ma, Y., Wang, Z. and Chang, Q. (2015), "Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis", Appl. Surf. Sci., 332, 47-54. https://doi.org/10.1016/j.apsusc.2015.01.139 DOI |
10 | El-Sayed, I.H., Huang, X. and El-Sayed, M.A. (2005), "Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer", Nano Letters, 5(5), 829-834. https://doi.org/10.1021/nl050074e DOI |
11 | Fiorillo, M., Verre, A.F., Iliut, M., Peiris-Pages, M., Ozsvari, B., Gandara, R., Cappello, A.R., Sotgia, F., Vijayaraghavan, A. and Lisanti, M.P. (2015), "Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for nontoxic cancer treatment, via "differentiation-based nanotherapy"", Oncotarget, 6(6), 3553-3562. https://doi.org/10.18632/oncotarget.3348 DOI |
12 | Garcia-Contreras, R., Scougall-Vilchis, R.J., Contreras-Bulnes, R., Ando, Y., Kanda, Y., Hibino, Y., Nakajima, H. and Sakagami, H. (2014), "Effects of TiO2 nanoparticles on cytotoxic action of chemotherapeutic drugs against a human oral squamous cell carcinoma cell line", in vivo, 28(2), 209-215. |
13 | Gurunathan, S., Han, J.W., Park, J.H., Kim, E., Choi, Y.J., Kwon, D.N. and Kim, J.H. (2015), "Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy", Int. J. Nanomed., 10, 6257-6276. https://doi.org/10.2147/IJN.S92449 DOI |
14 | Iwashita, K., Kobori, M., Yamaki, K. and Tsushida, T. (2000), "Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells", Biosci. Biotechnol. Biochem., 64(9), 1813-1820. https://doi.org/10.1271/bbb.64.1813 DOI |
15 | Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014), "Zinc oxide-from synthesis to application: a review", Materials, 7(4), 2833-2881. DOI |
16 | Krishna, P.G., Ananthaswamy, P.P., Gadewar, M., Bora, U. and Mutta, N.B. (2016), "In vitro antibacterial and anticancer studies of ZnO nanoparticles prepared by sugar fueled combustion synthesis", Adv. Mater. Lett., 8(1), 24-29. https://doi.org/10.5185/amlett.2017.6424 DOI |
17 | Koutu, V. and Malik, M.M. (2017), "Method of biological synthesis of zinc oxide (ZnO) nanoparticles", Patent Application Publication India 201721923873A; (Filed on July 6, 2017, Published on September 22, 2017). |
18 | Koutu, V., Shastri, L. and Malik, M.M. (2016), "Effect of NaOH concentration on optical properties of zinc oxide nanoparticles", Mater. Sci.-Poland, 34(4), 819-827. https://doi.org/10.1515/msp-2016-0119 DOI |
19 | Koutu, V., Shastri, L. and Malik, M.M. (2017), "Effect of temperature gradient on zinc oxide nano particles synthesized at low reaction temperatures", Mater. Res. Express, 4(3), 035011. https://doi.org/10.1088/2053-1591/aa5855 DOI |
20 | Liu, M., Amini, A. and Ahmad, Z. (2017), "Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth", Int. J. Biol. Macromolecule, 95, 145-152. https://doi.org/10.1016/j.ijbiomac.2016.11.038 DOI |
21 | Lucas, D.M., Still, P.C., Bueno-Perez, L., Grever, M.R. and Douglas Kinghorn, A. (2010), "Potential of plant-derived natural products in the treatment of leukemia and lymphoma", Current Drug Targets, 11(7), 812-822. https://doi.org/10.2174/138945010791320809 DOI |
22 | Magnotta, M., Murata, J., Chen, J. and De Luca, V. (2006), "Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling", Phytochemistry, 67(16), 1758-1764. https://doi.org/10.1016/j.phytochem.2006.05.018 DOI |
23 | Mittal, A.K., Chisti, Y. and Banerjee, U.C. (2013), "Synthesis of metallic nanoparticles using plant extracts", Biotechnol. Adv., 31(2), 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003 DOI |
24 | Sankar, R., Maheswari, R., Karthik, S., Shivashangari, K.S. and Ravikumar, V. (2014), "Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles", Materials Science and Engineering: C, 44, 234-239. https://doi.org/10.1016/j.msec.2014.08.030 DOI |
25 | Nagajyothi, P.C., Muthuraman, P., Sreekanth, T.V.M., Kim, D.H. and Shim, J. (2017), "Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells", Arab. J. Chem., 10(2), 215-225. https://doi.org/10.1016/j.arabjc.2016.01.011 DOI |
26 | Nam, K.C., Choi, K.H., Lee, K.D., Kim, J.H., Jung, J.S. and Park, B.J. (2016), "Particle size dependent photodynamic anticancer activity of hematoporphyrin-conjugated Fe3O4 particles", J. Nanomater., 1. https://doi.org/10.1155/2016/1278393 |
27 | Namvar, F., Azizi, S., Rahman, H.S., Mohamad, R., Rasedee, A., Soltani, M. and Rahim, R.A. (2016), "Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite", OncoTargets Therapy, 9, 4549-4559. https://doi.org/10.2147/OTT.S95962 DOI |
28 | Pourrahimi, A.M., Liu, D., Strom, V., Hedenqvist, M.S., Olsson, R.T. and Gedde, U.W. (2015), "Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications", J. Mater. Chem. A, 3(33), 17190-17200. https://doi.org/10.1039/C5TA03120F DOI |
29 | Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G. (2010), "Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications", Expert Opinion Drug Delivery, 7(9), 1063-1077. https://doi.org/10.1517/17425247.2010.502560 DOI |
30 | Tian, H., Fan, H., Li, M. and Ma, L. (2015), "Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor", ACS SENSORS, 1(3), 243-250. https://doi.org/10.1021/acssensors.5b00236 DOI |
31 | Wang, C., Fan, H., Ren, X. and Fang, J. (2018), "Room temperature synthesis and enhanced photocatalytic property of CeO2/ZnO heterostructures", Appl. Phys. A - Mater. Sci. Process., 124(2), 99. https://doi.org/10.1007/s00339-017-1543-8 DOI |
32 | Tian, H., Fan, H., Ma, J., Ma, L. and Dong, G. (2017), "Noble metal-free modified electrode of exfoliated graphitic carbon nitride/ZnO nanosheets for highly efficient hydrogen peroxide sensing", Electrochimica Acta, 247, 787-794. https://doi.org/10.1016/j.electacta.2017.07.083 DOI |
33 | Xiao, F.X., Hung, S.F., Tao, H.B., Miao, J., Yang, H.B. and Liu, B. (2014), "Spatially branched hierarchical ZnO nanorod- nanotube array heterostructures for versatile photocatalytic and photo electrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures", Nanoscale, 6(24), 14950-14961. DOI |
34 | Tang, L., Yang, X., Yin, Q., Cai, K., Wang, H., Chaudhury, I., Yao, C., Zhou, Q., Kwon, M., Hartman, J.A. and Dobrucki, I.T. (2014), "Investigating the optimal size of anticancer nanomedicine", Proceedings of the National Academy of Sciences, 111(43), 15344-15349. DOI |
35 | Tian, H., Fan, H., Ma, J., Liu, Z., Ma, L., Lei, S., Fang, J. and Long, C. (2018), "Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing", J. Hazard. Mater., 341, 102-111. https://doi.org/10.1016/j.jhazmat.2017.07.056 DOI |
36 | Tiong, S., Looi, C., Hazni, H., Arya, A., Paydar, M., Wong, W., Cheah, S.C., Mustafa, M. and Awang, K. (2013), "Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don", Molecules 18, no. 8 (2013): 9770-9784. DOI |