Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.6.325

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride  

Hu, Pengwei (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
Zheng, Dewen (New Energy Research Center Research Institute of Petroleum Exploration and Development (RIPED))
Xian, Yuxi (CAS Key Laboratory for Mechanical Behavior and Design of Materials, University of Science and Technology of China)
Hu, Xianhai (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
Zhang, Qian (New Energy Research Center Research Institute of Petroleum Exploration and Development (RIPED))
Wang, Shanyu (New Energy Research Center Research Institute of Petroleum Exploration and Development (RIPED))
Li, Mingjun (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
Cheng, Congliang (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
Liu, Jin (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
Wang, Ping (Anhui Key Laboratory of Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University)
Publication Information
Korean Journal of Materials Research / v.31, no.6, 2021 , pp. 325-330 More about this Journal
Abstract
Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.
Keywords
$Bi_2MoO_6$; $CO(NH_2)_2$; photocatalyst; degradation; tetracycline hydrochloride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. J. Zhang, X Li, X. Y. Sun, C. Kong, W. J. Xie, Z. Li and J. Liu, Appl. Surf. Sci., 487, 734 (2019).   DOI
2 Y. Luo, L X, M. Rysz, Y. Wang, H. Zhang and P. J. J. Alvarez, Environ. Sci. Technol., 45, 1827 (2011).   DOI
3 H. B. Yu, L B J, H. Wang, B.B. Huang, X.Z. Yuan, J.H. Huang, J. Zhang, and G. M. Zeng, Small, 15, 1901008 (2019).
4 J. F. Ma, J. F. Ding, L. M. Yu, L. Y. Li, Y. Kong and S. Komarneni, Appl. Clay Sci., 109, 76, (2015).   DOI
5 N. Subhaa, M. Mahalakshmi, M. Myilsamy, B. Neppolian and V. Murugesan, J. Photochem. Photobiol., A, 379, 150 (2019).   DOI
6 Y. H. Peng, Y. Zhang, F. H. Tian, J. Q. Zhang and J. Q. Yu, Crit. Rev. Solid. State., 42, 347 (2017).   DOI
7 Z. Liu, X. Q. Liu, C. L. Yua, L. F. Wei and H. B. Jia, Sep. Purif. Technol., 247, 116951 (2020).   DOI
8 T. T. Feng, H. Yin, H. Jiang, X. Chai, X. L. Li, D. Y. Li, J. Wu, X. H. Liu and B. Sun, New. J. Chem, 43, 9606 (2019).   DOI
9 X. Ding, W. K. Ho, J. Shang and L. Z. Zhang, Appl. Catal., B, 182, 316 (2016).   DOI
10 J. L. Li, X. J. Liu, Z. Sun and L. K. Pan, Ceram. Int., 41, 8592 (2015).   DOI
11 Y. N. Zhu, J. J. Mu, G. H. Zhen, Z. X. Dai, L. Y. Zhang, Y. Q. Ma, D. W. Zhang, Ceram. Int., 42, 17347 (2016).   DOI
12 L. Xu, H. Y. Xu, S. B. Wu and X.Y. Zhang, Appl. Surf. Sci., 258, 4934 (2012).   DOI
13 J. L. Wang, M. R. Dong, Q. C. Zhang ,W. S. Lin, Y. Xing, Chinese J. Inorg. Chem., 36, 827 (2020).
14 H. H. Li, K. W. Li, H. Wang, Mater. Chem. Phys., 116, 134 (2009).   DOI
15 N. Pugazhenthirana, P. Sathishkuma, S. Murugesanb and S. Anandan, Chem. Eng. J., 168, 1227 (2011).   DOI
16 Q. Q. Zhang, G. G. Ying, C. G. Pan, Y. S. Liu and J. L. Zhao, Environ. Sci. Technol., 49, 6772 (2015).   DOI
17 W. Y. Li and L. J. Xu, Acta Chim. Sinica, 77, 705 (2019).   DOI
18 Y. Wang, Y. Zhang, T. C. Zhang, G. Xiang, X. L. Wang and S.J. Yuan, ACS Appl. Nano Mater, 3, 8495 (2020).   DOI
19 Q. L. Wang, H. Jiang, S. T. Ding, H. M. Noh, B. K. Moon, B. C. Choi, J. S. Shi and J. H. Jeong, Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 46, 483 (2016).   DOI
20 D. Tu, H. W. Liao and Q. L. Deng, Chemistry Select, 3, 7170 (2018).