Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.3.225

Synthesis, characterization and potential applications of Ag@ZnO nanocomposites with S@g-C3N4  

Ahmad, Naveed (Department of Chemistry, University of Management and Technology)
Javed, Mohsin (Department of Chemistry, University of Management and Technology)
Qamar, Muhammad A. (Department of Chemistry, University of Management and Technology)
Kiran, Umbreen (Department of Chemistry, University of Management and Technology)
Shahid, Sammia (Department of Chemistry, University of Management and Technology)
Akbar, Muhammad B. (National Center for Nanoscience Technology (NCNST))
Sher, Mudassar (Department of Chemistry, University of Management and Technology)
Amjad, Adnan (Department of Chemistry, University of Management and Technology)
Publication Information
Advances in materials Research / v.11, no.3, 2022 , pp. 225-235 More about this Journal
Abstract
It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C 3 N 4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.
Keywords
composites; nanoparticles; photocatalytic activity; photodegradation; $S-g-C_3N_4$; ZnO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kuriki, R., Sekizawa, K., Ishitani, O. and Maeda, K. (2015), "Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts", Angew. Chem., Int. Ed., 54(8), 2406-2409. https://doi.org/10.1002/anie.201411170   DOI
2 Pare, B., Jonnalagadda, S., Tomar, H., Singh, P. and Bhagwat, V. (2008), "ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation", Desalination, 232, 80-90. https://doi.org/10.1016/j.desal.2008.01.007   DOI
3 Qamar, M.A., Shahid, S., Javed, M., Iqbal, S., Sher, M. and Akbar, M.B. (2020b), "Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity", J. Photochem. Photobiol. A: Chem., 401, 112776. ttps://doi.org/10.1016/j.jphotochem.2020.112776   DOI
4 Qamar, M.A., Shahid, S., Javed, M., Sher, M., Iqbal, S., Bahadur, A. and Li, D. (2021c), "Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations", Colloids Surf. A Physicochem. Eng. Asp., 611, 125863. https://doi.org/10.1016/j.colsurfa.2020.125863   DOI
5 Sher, M., Javed, M., Shahid, S., Hakami, O., Qamar, M.A., Iqbal, S., Al-Anazy, M.M. and Baghdadi, H.B. (2021a), "Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiation", J. Photochem. Photobiol. A: Chem., 418, 113393. https://doi.org/10.1016/j.jphotochem.2021.113393   DOI
6 Subramanian, V., Wolf, E. and Kamat, P.V. (2001), "Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?", J. Phys. Chem. B., 105(46), 11439-11446. https://doi.org/10.1021/jp011118k   DOI
7 Wang, K., Li, Q., Liu, B., Cheng, B., Ho, W. and Yu, J. (2015), "Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance", Appl. Catal. B: Environ., 176, 44-52. https://doi.org/10.1016/j.apcatb.2015.03.045   DOI
8 Zhang, J., Chen, Y. and Wang, X. (2015), "Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications", Energy Environ. Sci., 8(11), 3092-3108. https://doi.org/10.1039/C5EE01895A   DOI
9 Wang, Y., Li, H., Yao, J., Wang, X. and Antonietti, M. (2011), "Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation", Chem. Sci., 2(3), 446-450. https://doi.org/10.1039/C0SC00475H   DOI
10 Zhang, W., Zhang, J., Dong, F. and Zhang, Y. (2016), "Facile synthesis of in situ phosphorus-doped gC3N4 with enhanced visible light photocatalytic property for NO purification", Rsc Adv., 6(91), 88085-88089. https://doi.org/10.1039/C6RA18349B   DOI
11 Kim, S.P., Choi, M.Y. and Choi, H.C. (2016), "Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation", Mater. Res. Bull., 74, 85-89. https://doi.org/10.1016/j.materresbull.2015.10.024   DOI
12 Iqbal, S., Javed, M., Bahadur, A., Qamar, M.A., Ahmad, M., Shoaib, M., Raheel, M., Ahmad. N., Akbar. M.B. and Li, H. (2020), "Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly (acrylic acid) microgel shell for efficient removal of methylene blue under visible light", J. Mater. Sci.: Mater. Electron., 31(11), 8423-8435. https://doi.org/10.1007/s10854-020-03377-9   DOI
13 Jaramillo-Paez, C., Navio, J.A., Hidalgo, M.C. and Macias, M. (2017), "High UV- photocatalytic activity of ZnO and Ag/ZnO synthesized by a facile method", Catal. Today, 284, 121-128. https://doi.org/10.1016/j.cattod.2016.11.021   DOI
14 Jourshabani, M., Shariatinia, Z. and Badiei, A. (2017), "Controllable synthesis of mesoporous sulfur-doped carbon nitride materials for enhanced visible light photocatalytic degradation", Langmuir, 33(28), 7062-7078. https://doi.org/10.1021/acs.langmuir.7b01767   DOI
15 Liu, G., Niu, P., Sun, C., Smith, S.C., Chen, Z., Lu, G.Q. and Cheng, H.M. (2010), "Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4", J. Am. Chem. Soc., 132(33), 11642-11648. https://doi.org/10.1021/ja103798k   DOI
16 Kumar, S.G. and Rao, K.K. (2015), "Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications", Rsc Adv., 5(5), 3306-3351. https://doi.org/10.1039/C4RA13299H   DOI
17 Kuo, W.S. and Ho, P.H. (2001), "Solar photocatalytic decolorization of methylene blue in water", Chemosphere, 45(1), 77-83. https://doi.org/10.1016/S0045-6535(01)00008-X   DOI
18 Linsebigler, A.L., Lu, G. and Yates Jr, J.T. (1995), "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chem. Rev., 95(3), 735-758. https://doi.org/10.1021/cr00035a013   DOI
19 Jing, L., Xu, Y., Huang, S., Xie, M., He, M., Xu, H., Li, H. and Zhang, Q. (2016), "Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: Highly efficient visible light photocatalytic and antibacterial activity", Appl. Catal. B: Environ., 199, 11-22. https://doi.org/10.1016/j.apcatb.2016.05.049   DOI
20 Ali, I. and Gupta, V.K. (2006), "Advances in water treatment by adsorption technology", Nat. Protoc., 1(6), 2661-2667. https://doi.org/10.1038/nprot.2006.370   DOI
21 Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A. and Jassim, A.N. (2015), "Synthesis of zinc oxide nanoparticles via sol-gel route and their characterization", Nanosci. Nanotechnol., 5(1), 1-6. https://doi.10.5923/j.nn.20150501.01   DOI
22 Chen, S., Wang, C., Bunes, B.R., Li, Y., Wang, C. and Zang, L. (2015), "Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates", Appl. Catal. A: General, 498, 63-68. https://doi.org/10.1016/j.apcata.2015.03.026   DOI
23 Dong, G., Zhao, K. and Zhang, L. (2012), "Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4", Chem. Commun., 48(49), 6178-6180. https://doi.org/10.1039/C2CC32181E   DOI
24 Height, M.J., Pratsinis, S.E., Mekasuwandumrong, O. and Praserthdam, P. (2006), "Ag-ZnO catalysts for UV-photodegradation of methylene blue", Appl. Catal. B: Environ., 63(3-4), 305-312. https://doi.org/10.1016/j.apcatb.2005.10.018   DOI
25 Hong, J., Xia, X., Wang, Y. and Xu, R. (2012), "Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light", J. Mater. Chem., 22(30), 15006-15012. https://doi.org/10.1039/C2JM32053C   DOI
26 Iqbal, S. (2020), "Spatial charge separation and transfer in L-cysteine capped NiCoP/CdS nanoheterojunction activated with intimate covalent bonding for high-quantum-yield photocatalytic hydrogen evolution", Appl. Catal. B: Environ., 274, 119097. https://doi.org/10.1016/j.apcatb.2020.119097   DOI
27 Iqbal, S., Pan, Z. and Zhou, K. (2017), "Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures", Nanoscale, 9(20), 6638-6642. https://doi.org/10.1039/C7NR01705G   DOI
28 Irfan, R.M., Tahir, M.H., Khan, S.A., Shaheen, M.A., Ahmed, G. and Iqbal, S. (2019), "Enhanced photocatalytic H2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution", J. Colloid Interface Sci., 557, 1-9. https://doi.org/10.1016/j.jcis.2019.09.014   DOI
29 Irfan, R.M., Tahir, M.H., Maqsood, M., Lin, Y., Bashir, T., Iqbal, S., Zhao, J., Gao, L. and Haroon, M. (2020), "CoSe as non-noble-metal cocatalyst integrated with heterojunction photosensitizer for inexpensive H2 production under visible light", J. Catal., 390, 196-205. https://doi.org/10.1016/j.jcat.2020.07.034   DOI
30 Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z. and Wang, H. (2017), "Doping of graphitic carbon nitride for photocatalysis: a review", Appl. Catal. B: Environ., 217, 388-406. https://doi.org/10.1016/j.apcatb.2017.06.003   DOI
31 Khan, S.B., Rahman, M.M., Marwani, H.M., Asiri, A.M. and Alamry, K.A. (2013), "An assessment of zinc oxide nanosheets as a selective adsorbent for cadmium", Nanosc. Res. Lett., 8(1), 377. https://doi.org/10.1186/1556-276X-8-377   DOI
32 Kumar, R., Rana, D., Umar, A., Sharma, P., Chauhan, S. and Chauhan, M.S. (2015), "Ag-doped ZnO nanoellipsoids: Potential scaffold for photocatalytic and sensing applications", Talanta, 137, 204-213. https://doi.org/10.1016/j.talanta.2015.01.039   DOI
33 Ran, J., Ma, T.Y., Gao, G., Du, X.W. and Qiao, S.Z. (2015), "Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production", Energy Environ. Sci., 8(12), 3708-3717. https://doi.org/10.1039/C5EE02650D   DOI
34 Hussain, W., Badshah, A., Hussain, R.A., Aleem, M.A., Bahadur, A., Iqbal, S., Farooq, M.U. and Ali, H. (2017), "Photocatalytic applications of Cr2S3 synthesized from single and multi-source precursors", Mater. Chem. Phys., 194, 345-355. https://doi.org/10.1016/j.matchemphys.2017.04.001   DOI
35 Qamar, M.A., Javed, M., Shahid, S., Iqbal, S., Abubshait, S.A., Abubshait, H.A., Ramay. S.M., Mehmood, A and Ghaithan, H.M. (2021a), "Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light", J. Environ. Chem. Eng., 9(4), 105534. https://doi.org/10.1016/j.jece.2021.105534   DOI
36 Qamar, M.A., Shahid, S., Javed, M., Iqbal, S., Sher, M., Bahadur, A., AL-Anazy, M.M., Laref, A. and Li, D. (2021b), "Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations", Colloids Surf. A Physicochem. Eng. Asp., 614, 126176. https://doi.org/10.1016/j.colsurfa.2021.126176   DOI
37 Samadi, M., Zirak, M., Naseri, A., Khorashadizade, E. and Moshfegh, A.Z. (2016), "Recent progress on doped ZnO nanostructures for visible-light photocatalysis", Thin Solid Films, 605, 2-19. https://doi.org/10.1016/j.tsf.2015.12.064   DOI
38 Sher, M., Javed, M., Shahid, S., Iqbal, S., Qamar, M.A., Bahadur, A. and Qayyum, M.A. (2021b), "The controlled synthesis of g-C3N4/Cd-doped ZnO nanocomposites as potential photocatalysts for the disinfection and degradation of organic pollutants under visible light irradiation", RSC Adv., 11(4), 2025-2039. https://doi.org/10.1039/d0ra08573a   DOI
39 Anwer, S., Anjum, D.H., Luo, S., Abbas, Y., Li, B., Iqbal, S. and Liao, K. (2021), "2D Ti3C2Tx MXene nanosheets coated cellulose fibers based 3D nanostructures for efficient water desalination", Chem. Eng. J., 406, 126827. https://doi.org/10.1016/j.cej.2020.126827   DOI
40 Feng, L.L., Zou, Y., Li, C., Gao, S., Zhou, L.J., Sun, Q., Fan, M., Wang, H., Wang, D., Li, G.D. and Zou, X. (2014), "Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-lightdriven H2 evolution", Int. J. Hydrogen Energy, 39(28), 5373-15379. https://doi.org/10.1016/j.ijhydene.2014.07.160   DOI
41 Sher, M., Khan, S.A., Shahid, S., Javed, M., Qamar, M.A., Chinnathambi, A. and Almoallim, H. (2021c), "Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light-driven methylene blue degradation and antibacterial activities", J. Environ. Chem. Eng., 9(4), 105366. https://doi.org/10.1016/j.jece.2021.105366   DOI
42 Qamar, M.A., Shahid, S., Khan, S.A., Zaman, S. and Arwar, M.N. (2017), "Synthesis characterization, optical and antibacterial studies of Co-doped SnO2 nanoparticles", Digest J. Nanomater. Biostruct., 12(4), 1127-1135.
43 Qamar, M.A., Shahid, S. and Javed, M. (2020a), "Synthesis of dynamic g-C3N4/Fe@ ZnO nanocomposites for environmental remediation applications", Ceram. Int., 46(14), 22171-22180. https://doi.org/10.1016/j.ceramint.2020.05.294   DOI
44 Thi, V.H.T. and Lee, B.K. (2017), "Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method", J. Hazard. Mater., 324, 329-339. https://doi.org/10.1016/j.jhazmat.2016.10.066   DOI
45 Wang, X., Maeda, K., Chen, X., Takanabe, K., Domen, K., Hou, Y., Fu, X. and Antonietti, M. (2009), "Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light", J. Am. Chem. Soc., 131(5), 680-1681. https://doi.org/10.1021/ja809307s   DOI