• Title/Summary/Keyword: Particle Morphology

Search Result 775, Processing Time 0.027 seconds

An Experimental Study on Optical and Physical Properties of Particulate Matter produced from F-76 Marine Diesel and JP-8 Aviation Fuels (F-76 선박용 디젤유 및 JP-8 항공유 입자상물질의 광학 및 물리적 특성에 대한 실험적 연구)

  • Choi, Jae-Hyuk;Choi, Seuk-Cheun;Kim, Dae-Yong;Lee, Joo-Hee;Park, Seul-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • The dimensionless extinction constants of particulate matter for F-76 diesel and JP-8 aviation fuels were measured at both 633 nm and 853 nm in the transmission cell where the simultaneous gravimetric measurement of PM concentration is compared to the light extinction measurement. For the F-76 diesel PM, the average value of the dimensionless extinction constants at 633 nm was 8.8 whereas that of the dimensionless extinction constants for JP-8 was 9.8 at the same wavelength. As the wavelength is increased to 853 nm, the average value for the F-76 diesel was reduced to 8.2 whereas that for JP-8 was decreased to 8.9.

Crystallinity and Chemical Reactivity of Bimessite(δ-MnO2) Influenced by Iron (철에 의한 버네사이트의 결정도 및 화학적 활성의 변화)

  • Kim, Jae-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.327-332
    • /
    • 1999
  • Manganese (Mn) oxides in soils have been a research subject since they react with nutrients and contaminants and Mn itself is an essential element for plant growth. Birnessite was synthesized in the presence of iron (Fe) in the precipitating solution. Influence of Fe, one of common elements in soils, on crytallinity, morphology, and chemical reactivity of birnessite was examined using X-ray diffraction (XRD), electron microscope, canon exchange capacity (CEC), and chromium (Cr) oxidation capacity. With increasing Fe concentration in the precipitating solution, crystallinity and crystal size decreased. Hexagonal plates of the birnessites formed at low Fe concentration were dominant and replaced more and more by aggregate of small particles with increasing the Fe concentration. There is no significant change in CEC with changing the Fe concentration. Chromium oxidation capacity of the birnessite increased with increasing the Fe concentration. Iron in the precipitating solution poisoned crystal growth by adsorption on the surface and increased nucleation. Since Fe is a common constituent under pedogenic environment and Fe and Mn oxides often coexist in Mn oxide nodules, the birnessite with small particle, low crystallinity, and high chemical reactivity is the form which is more likely to be formed in soils. The high CEC ($140cmol_ckg^{-1}$) and oxidation capacity of birnessite indicate that birnessite can be used in environment and agriculture.

  • PDF

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

Preparation of cobalt oxide(Co3O4·CoO) ultra fine particles using cobalt(II) chloride hexahydrate and crystalline cellulose as a starting materials (Cobalt(II) chloride hexahydrate와 결정성 셀룰로오스를 출발물질로 사용한 산화코발트(Co3O4·CoO) 초미세입자의 합성)

  • Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.587-592
    • /
    • 2023
  • Cobalt oxide (Co3O4·CoO) ultra fine particles were synthesized by liquid phase precursor method. cobalt(II) chloride hexahydrate (CoCl2·6H2O) was as a starting material. A plant-derived crystalline cellulose was used as impregnating materials. A impregnated precursor was calcined at a temperature of 350 to 900℃ to obtain cobalt oxide particles having a particle size of 1 to 10㎛. The crystallization process and morphology according to the calcination temperature were examined, and the properties of the synthesized powder were evaluated using SEM and XRD. It was confirmed that a crystal phase of Co3O4 began to form around 350℃ and crystal growth occurred up to 900℃. At a temperature above 500℃, the Co3O4 crystal was changed to another crystal phase CoO.

Synthesis and characterization of Li3V2(PO4)3/C composite cathode materials using direct co-precipitation method (직접 공침법을 이용한 Li3V2(PO4)3/C 복합체 양극 활물질 합성 및 특성)

  • Jeong-Hwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.167-173
    • /
    • 2023
  • Li3V2(PO4)3 and Li3V2(PO4)3/C composite with single phase monoclinic structure for the cathode materials are successfully synthesized by direct co-precipitation method using N2H4·H2O as the reducing agent and alginic acid as the carbon source, and their electrochemical properties were compared. The particles with approximately 1~2 ㎛ size and the uniform spherical-like morphology of the narrow particle size distribution were obtained. In addition, the residual carbon can also improve the electrical conductivity. The Li3V2(PO4)3/C composite has improved initial specific discharge capacity and excellent cycle characteristics to maintain capacity stably than Li3V2(PO4)3. The results indicate that the reducing agent and carbon composite can affect the good crystallinity and electrochemical performance of the cathode materials.

Impact of the Silicate Polymerization on the Formation of Insoluble Aluminium Silicate (수 중 존재하는 실리케이트의 존재형태가 불용성 알루미늄실리케이트 형성에 미치는 영향)

  • Gwon, Eun-Mi;Hong, Seung-Kwan;Kim, Ji-Hyong;Jung, Wook-Jin;Yoo, Myung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.654-661
    • /
    • 2007
  • The goal of this research was to identify the impact of silicate polymerization on the formation of insoluble aluminiumsilicate salts which could be a cause of irreversible fouling in the membrane process by lab-scale test. For this, the amount and characteristics of precipitates that were formed in six samples with different Al and Si concentration were analyzed. And the particles was also observed by SEM-EDS(Scanning Electron Microscope - Electron Dispersion Spectrophotometer) to compare morphology and ratio of Al and Si in each precipitates. Finally the reactive and nonreactive silicate contents in the solution and precipitates were analyzed to calculate silicate form content in each fraction. The amount of precipitates was in proportion to the total concentration of both element in solution. And the amount of insoluble particle that was not dissolved in the acid solution was recorded the highest in the sample 2 of which Si concentration was lower than the saturation concentration, 50 mg/L. The content of reactive silicate in precipitates was also recorded the highest value in sample 2 of which almost silicate form was reactive. When the silicate concentration is same, that value was recorded the highest in the sample with highest Al concentration. The SEM morphology of the precipitates was similar to that of Aluminiumhydroxide and the insoluble precipitates was not dissolved in acidic solution with pH 2.7 was able to observed only in sample 2. The ratio of Al and Si in the precipitates was ranged $0.48\sim3.14$, thai of sample 2 was recorded the highest value, 3.14. It is concluded that the insoluble aluminiumsilicate could be easily formed in the solution of which silicate exist as a reactive form and coexisting Al is sufficient.

The Effects of Marine Sediments and NaCl as Impurities on the Calcination of Oyster Shells (굴패각 소성시 해저 퇴적물과 NaCl 불순물이 소성 특성에 미치는 영향)

  • Ha, Su Hyeon;Kim, Kangjoo;Kim, Seok-Hwi;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • The calcination of oyster shells have been studied as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. However, since pure shells can not be used in calcination process, some impurities are contained and the changes in the characteristics of the calcination products are expected. In this study, the surface characteristics of the calcination products are investigated by mineralogical analysis according to the contents of NaCl, which can be derived from sea water, and sediments on the surface of the shell as impurities. The marine sediments on the shells were mainly composed of quartz, albite, calcite, small amounts of amphibole and clay minerals such as ilite, chlorite and smectite. After calcination of oyster shells mixed with 0.2-4.0 wt% sediments at $900^{\circ}C$ for 2 hours, regardless of the dehydration, dehydroxylation, and phase change of these minerals at the lower temperature than this experiment, no noticeable changes were observed on the specific surface area of the calcined product. However, when mixed with 0.1 to 2.0 wt% NaCl, the specific surface area generally increases as compared with the shell sample before calcination. The specific surface area increases with increasing amount of salt, and then decreases again. This is closely related to the changes of surface morphology. As the amount of NaCl increases, the morphology of the surface is similar to that of gel. It changes into a slightly angular, smaller particle and again looks like gel with increasing amount of NaCl. Our results show that NaCl affects morphological changes probably caused by melting of some oyster shells, but may have different effects on the specific surface area of calcination product depending on the NaCl contents.

Mineralogical Characterization of Asbestos in Soil at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 토양 내 석면의 광물학적 특성)

  • Kim, Jaepil;Jung, Haemin;Song, Suckwhan;Lim, HoJu;Lee, WooSeok;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.479-488
    • /
    • 2014
  • Naturally occurring asbestos (NOA) from disturbance of rocks and soils has been overlooked as a source of exposure that could potentially have a detrimental impact on human health. But, few researches on mineralogical characteristics of NOA occurred in soils have been reported in Korea. Therefore, the objective of this study was to investigate the mineralogical characteristics of NOA occurred in soils at Daero-ri area, Seosan, Chungnam Province, Korea. Sedimentation method was used for particle size separation of the asbestos-containing soils. XRD and PLM analyses were used to characterize mineralogical characteristics and mineral assemblages in soils. SEM-EDS and TEM-EDS analyses were used to characterize mineral morphology and chemical composition. Particle size analyses of the asbestos-containing soils showed they were composed of 26-93% sand, 4-23% silt and 3-70% clay. Soil texture of the soils was mainly sand, sandy loam, sandy clay, and clay. PLM analyses of the soil showed that most of the soil contained asbestiform tremolite and actinolite. The average content of asbestos in the soil was 1.5 wt. %. Therefore, the soil can be classified into asbestos-contaminated soils based on U. S. Environmental Protection Agency classification (content of asbestos in contaminated soil > 1%). Morphologically different types of tremolite such as long fibrous, needle-like, fiber bundle, bladed and prismatic forms co-existed. Prismatic tremolite was dominant in sand fraction and asbestiform tremolite was dominant in silt fraction. This study indicates that the prismatic form of tremolite transform gradually into a fibrous form of tremolite due to soil weathering because tremolite asbestos was mainly existed in silt fraction rather than sand fraction.