DOI QR코드

DOI QR Code

Synthesis and characterization of Li3V2(PO4)3/C composite cathode materials using direct co-precipitation method

직접 공침법을 이용한 Li3V2(PO4)3/C 복합체 양극 활물질 합성 및 특성

  • Jeong-Hwan Song (Department of Materials Science and Engineering, PaiChai University)
  • 송정환 (배재대학교 신소재공학과)
  • Received : 2023.09.22
  • Accepted : 2023.10.05
  • Published : 2023.10.31

Abstract

Li3V2(PO4)3 and Li3V2(PO4)3/C composite with single phase monoclinic structure for the cathode materials are successfully synthesized by direct co-precipitation method using N2H4·H2O as the reducing agent and alginic acid as the carbon source, and their electrochemical properties were compared. The particles with approximately 1~2 ㎛ size and the uniform spherical-like morphology of the narrow particle size distribution were obtained. In addition, the residual carbon can also improve the electrical conductivity. The Li3V2(PO4)3/C composite has improved initial specific discharge capacity and excellent cycle characteristics to maintain capacity stably than Li3V2(PO4)3. The results indicate that the reducing agent and carbon composite can affect the good crystallinity and electrochemical performance of the cathode materials.

출발원료인 바나듐 산화물을 이용한 Li3V2(PO4)3를 제조하기 위해 N2H4·H2O를 환원제로 사용하였고 낮은 전기 전도성을 개선하기 위하여 알긴산을 탄소원으로 사용하여 직접 공침법을 통해 단사정계 Li3V2(PO4)3/C 복합체의 양극 활물질을 합성하여 전기화학 특성을 비교하였다. 구형에 가까운 형상으로 대략 1~2 ㎛의 균일한 입자 크기와 좁은 입도분포를 가지는 Li3V2(PO4)3을 얻을 수 있었다. 또한 제조한 Li3V2(PO4)3/C 복합체의 양극 활물질은 Li3V2(PO4)3 보다 초기 방전용량의 개선과 안정적으로 용량을 유지하는 사이클 특성이 우수하여 탄소 복합체 형성으로 인해 양극 활물질의 전기화학적 성능이 향상하는 것을 알 수 있었다.

Keywords

References

  1. H.-K. Song, K.T. Lee, M.G. Kim, L.F. Nazar and J.P. Cho, "Recent progress in nanostructured cathode materials for lithium secondary batteries", Adv. Funct. Mater. 20 (2010) 3818. 
  2. X. Cao, H. Wu, P. Ge, Y. Zhao, L. Zhu, F. Liu and J. Wang, "Synthesis of Li3V2(PO4)3/C composites as cathode materials for lithium ion batteries via a sol-gel method", Int. J. Electrochem. Sci. 10 (2015) 2997. 
  3. Y.I. Jo and B.K. Na, "Synthesis and electrochemical characteristics of carbon added Li3V2(PO4)3", J. Korean Electrochem. Soc. 15 (2012) 101. 
  4. D. Guyomard and J.M. Tarascon, "Li metal-free rechargeable LiMn2O4/carbon cells: Their understanding and optimization", J. Electrochem. Soc. 139 (1992) 937. 
  5. C.D.W. Jones, E. Rossen and J.R. Dhan, "Structure and electrochemistry of LixCryCo1-yO2", Solid State Ionics 68 (1994) 65. 
  6. H.Y. Xu, S. Xie, N. Ding, B.L. Liu, Y. Shang and C.H. Chen, "Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method", Electrochim. Acta 51 (2006) 4352. 
  7. K. Ozawa, "Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system", Solid State Ionics 69 (1994) 212. 
  8. W.J. Zhang, "Structure and performance of LiFePO4 cathode materials: A review", J. Power Sources 196 (2011) 2962. 
  9. Q. Ni, L. Zheng, Y. Bai, T. Liu, H. Ren, H. Xu, C. Wu and J. Lu, "An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries", ACS Energy Lett. 5 (2020) 1763. 
  10. X. Rui, Q. Yan, S.K. Maria and T.M. Lim, "Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review", J. Power Sources 258 (2014) 19. 
  11. S.H. Lee and S.S. Park, "Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery: Structure, defect chemistry, lithium ion transport pathway, and dynamics", J. Phys. Chem. C 116 (2012) 25190. 
  12. Q. Wei, Y. Xu, Q. Li, S. Tan, W. Ren, Q. An and L. Mai, "Novel layered Li3V2(PO4)3/rGO&C sheets as high-rate and long-life lithium ion battery cathodes", Chem. Commun. 52 (2016) 8730. 
  13. Z. Chen, C. Dai, G. Wu, M. Nelson, X. Hu, R. Zhang, J. Liu and J. Xia, "High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test", J. Electrochim. Acta 55 (2010) 8595. 
  14. P. Fu, Y. Zhao, Y. Dong, X. An and G. Shen, "Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine", J. Power Sources 162 (2006) 651. 
  15. Y.N. Ko, H.Y. Koo, J.H. Kim, J.H. Yi, Y.C. Kang and J.-H. Lee, "Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis", J. Power Sources 196 (2011) 6682. 
  16. C. Sun, S. Rajasekhara, Y. Dong and J.B. Goodenough, "Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries", ACS Appl. Mater. Interfaces 3 (2011) 3772. 
  17. L. Wang, X. Jiang, X. Li, X. Pi, Y. Ren and F. Wu, "Rapid preparation and electrochemical behavior of carbon-coated Li3V2(PO4)3 from wet coordination", Electrochim. Acta 55 (2010) 5057. 
  18. K. Nagamine, T. Honma and T. Komatsu, "A fast synthesis of Li3V2(PO4)3 crystals via glass-ceramic processing and their battery performance", J. Power Sources 196 (2011) 9618. 
  19. O. Karahan, A. Tufani, S. Unal, I.B. Misirlioglu, Y.Z. Menceloglu and K. Sendur, "Synthesis and morphological control of VO2 nanostructures via a one-step hydrothermal method", Nanomaterials 11 (2021) 752. 
  20. C. Wang, Z. Guo, W. Shen, A. Zhang, Q. Xu, H. Liu and Y. Wang, "Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials", J. Mater. Chem. A 3 (2015) 6064. 
  21. J.P. Soares, J.E. Santos, G.O. Chierice and E.T.G. Cavalheiro, "Thermal behavior of alginic acid and its sodium salt", Ecl. Quim. 29 (2004) 57. 
  22. S. Guo, Y. Bai, Z.F. Geng, F. Wu and C. Wu, "Facile synthesis of Li3V2(PO4)3/C cathode material for lithium-ion battery via freeze-drying", J. Energy Chem. 32 (2019) 159.