Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.6.559

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene  

PRISCILLA, LIA (Clean Fuel Laboratory, Korea Institute of Energy Research)
KIM, SOOHYUN (Clean Fuel Laboratory, Korea Institute of Energy Research)
YOO, JIHO (Clean Fuel Laboratory, Korea Institute of Energy Research)
CHOI, HOKYUNG (Clean Fuel Laboratory, Korea Institute of Energy Research)
RHIM, YOUNGJOON (Clean Fuel Laboratory, Korea Institute of Energy Research)
LIM, JEONGHWAN (Clean Fuel Laboratory, Korea Institute of Energy Research)
KIM, SANGDO (Clean Fuel Laboratory, Korea Institute of Energy Research)
CHUN, DONGHYUK (Clean Fuel Laboratory, Korea Institute of Energy Research)
LEE, SIHYUN (Clean Fuel Laboratory, Korea Institute of Energy Research)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.6, 2018 , pp. 559-569 More about this Journal
Abstract
Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).
Keywords
Ash-free coal; Steam reforming; Nickel; Catalytic support; Carbon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Xueqiu, L. Xianfeng, N. Baisheng, and S. Dazhao, "FTIR and Raman spectroscopy characterization of functional groups in various rank coals", Fuel, Vol. 206, 2017, pp. 555-563.
2 K. Wang, F. Du, and G. Wang, "The influence of methane and $CO_2$ adsorption on the functional groups of coals: Insights from a Fourier transform infrared investigation", J. Nat. Gas Sci. Eng., Vol. 45, 2017, pp. 358-367.   DOI
3 W. Geng, T. Nakajima, H. Takanashi, and A. Ohki, "Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry", Fuel, Vol. 88, 2009, pp. 139-144.   DOI
4 S. A. Benson and E. A. Sondreal, "Ash-related issues during combustion and gasification, in impact of mineral impurities in solid fuel combustion", Springer, USA, 1999, pp. 1-21.
5 H. D. Setiabudi, C. C. Chong, S. M. Abed, L. P. Teh, and S. Y. Chin, "Comparative study of Ni-Ce loading method: Beneficial effect of ultrasonic-assisted impregnation method in $CO_2$ reforming of $CH_4$ over Ni-Ce/SBA-15", J. Environ. Chem. Eng., Vol. 6, 2018, pp. 745-753.   DOI
6 E. Rio, D. Gaona, J. C. Hernandez-Garrido, J. J. Calvino, M. G. Basallote, M. J. Fernandez-Trujillo, J. A. Perez-Omil, and J. M. Gatica, "Speciation-controlled incipient wetness impregnation : A rational synthetic approach to prepare sub-nanosized and highly active ceria-zirconia supported gold catalysts", J. Catal., Vol. 318, 2014, pp. 119-127.   DOI
7 I. Lee, S. Jin, D. Chun, H, Choi, S. Lee, K. Lee, and J. Yoo, "Ash-free coal as fuel for direct carbon fuel cell", Sci. China Chem., Vol. 57, 2014, pp. 1010-1018.   DOI
8 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)", Pure Appl. Chem., Vol. 87, 2015, pp. 1051-10691.   DOI
9 T. Takanohashi, T. Shishido, H. Kawashima, and I. Saito, "Characterisation of HyperCoals from coals of various ranks", Fuel, Vol. 87, 2008, pp. 592-598.   DOI
10 N. Ruhswurmova, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, S. Kim, H. Choi, and S. Lee, "Nickel supported on low rank coal for steam reforming of ethyl acetate", Int. J. Hydrogen Energy, Vol. 43, 2018, pp. 15880-15890.   DOI
11 R. A. Ortega-dominguez, H. Vargas-Villagran, C. Penaloza-Orta, K. Saavedra-Rubio, X. Bokhimi, and T. E. Klimova, "A facile method to increase metal dispersion and hydrogenation activity of Ni/SBA-15 catalysts", Fuel, Vol. 198, 2017, pp. 110-122.   DOI
12 E. Marceau, M. Che, J. Cejka, and A. Zukal, "Nickel (II) nitrate vs. acetate: Influence of the precursor on the structure and reducibility of Ni/MCM-41 and Ni/Al-MCM-41 catalysts", ChemCatChem, Vol. 2, 2010, pp. 413-422.   DOI
13 S. Murov, "Properties of organic solvents", Miller's Home, https://sites.google.com/site /miller00828/in/solvent-polarity-table, 1998.
14 P. Serp and J. L. Figuiredo, "Carbon Materials for Catalysis", John Wiley & Sons, Inc., USA, 2009.
15 S. Samih and J. Chaouki, "Catalytic ash free coal gasification in a fluidized bed thermogravimetric analyzer", Powder Technol., Vol. 316, 2017, pp. 551-559.   DOI
16 T. Yoshida, T. Takanohashi, K. Sakanishi, I. Saito, M. Fujita, and K. Mashimo, "The effect of extraction condition on 'HyperCoal' production (1) - Under room-temperature filtration", Fuel, Vol. 81, 2002, pp. 1463-1469.   DOI
17 R. Saidur, E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, "A review on biomass as a fuel for boilers", Renewable Sustainable Energy Reviews, Vol. 15, 2011, pp. 2262-2289.   DOI
18 T. Yoshida, C. Li, T. Takanohashi, A. Matsumura, S. Sato, and I. Saito, "Effect of extraction condition on 'HyperCoal' production (2) - Effect of polar solvents under hot filtration", Fuel Process. Technol., Vol. 86, 2004, pp. 61-72.   DOI
19 H. Juntgen, "Activated carbon as catalyst support", Fuel, Vol. 65, 1986, pp. 1436-1446.   DOI
20 W. Mohd and A. Wan, "Textural characteristics, surface chemistry and oxidation of activated carbon", J. Nat. Gas Chem., Vol. 19, 2010, pp. 267-279.   DOI
21 J. A. Ruiz, M. C. Juarez, M. P. Morales, P. Munoz, and M. A. Mendivil, "Biomass gasification for electricity generation: Review of current technology barriers", Renewable Sustainable Energy Reviews, Vol. 18, 2013, pp. 174-183.   DOI
22 J. Rizkiana, G. Guan, W. B. Widayatno, X. Hao, W. Huang, A. Tsutsumi, and A. Abudula, "Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures", Fuel, Vol. 134, 2014, pp. 414-419.   DOI
23 Y. Shen and K. Yoshikawa, "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis - A review", Renewable Sustainable Energy Reviews, Vol. 21, 2013, pp. 371-392.   DOI
24 X. Liu, X. Yang, C. Liu, P. Chen, X. Yue, and S. Zhang, "Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts", J. Taiwan Inst. Chem. Eng., Vol. 65, 2016, pp. 233-241.   DOI
25 A. Ahmadpour and D. D. Do, "The preparation of active carbons from coal by chemical and physical activation", Carbon, Vol. 34, 1996, pp. 471-479.   DOI
26 J. A. Rached, C. E. Hayek, E. Dahdah, C. Gennequin, S. Aouad, H. L. Tidahy, J. Estephane, B. Nsouli, A. Aboukaïs, and E. Abi-Aad, "Ni based catalysts promoted with cerium used in the steam reforming of toluene for hydrogen production", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 1289-12840.
27 H. H. Schobert, "Lignites of North America", Elsevier, The Netherlands, 1995.
28 J. Yu, J. A. Lucas, and T. F. Wall, "Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review", Prog. Energy Combustion Sci., Vol. 33, 2007, pp. 135-170.   DOI
29 C. Z. Li, "Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal", Fuel, Vol. 86, 2007, pp. 1664-1683.   DOI
30 M. Arif, F. Jones, A. Barifcani, and S. Iglauer, "Influence of surface chemistry on interfacial properties of low to high rank coal seams", Fuel, Vol. 194, 2017, pp. 211-221.   DOI
31 F. Rodriguez-Reinoso, "The role of carbon materials in heterogeneous catalysis", Carbon, Vol. 36, 1998, pp. 159-175.   DOI
32 S. Kim, D. Chun, Y. Rhim, J. Lim, S. Kim, H. Choi, S. Lee, and J. Yoo, "Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst", Int. J. Hydrogen Energy, Vol. 40, 2015, pp. 11855-11862.   DOI
33 S. D. Robertson, B. D. McNicol, H. H. De Baas, S. C. Kloet, and J. W. Jenkins, "Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction", J. Catal., Vol. 37, 1975, pp. 424-431.   DOI
34 M. Luo, P. Fang, M. He, and Y. Xie, "In situ XRD, Raman, and TPR studies of CuO/$Al_2O_3$ catalysts for CO oxidation", J. Mol. Catal. A Chem., Vol. 239, 2005, pp. 243-248.   DOI
35 J. C. Moreno-Pirajan and L. Giraldo, "Heavy metal ions adsorption from wastewater using activated carbon from orange peel", E-Journal Chem., Vol. 9, 2012, pp. 926-937.   DOI
36 G. S. Miguel, S. D. Lambert, and N. J. D. Graham, "Thermal regeneration of granular activated using inert atmospheric conditions", Environ. Technol., Vol. 23, 2002, pp. 1337-1346.   DOI
37 B. Ledesma, S. Roman, A. alvarez-murillo, E. Sabio, and J. F. Gonzalez, "Cyclic adsorption/thermal regeneration of activated carbons", J. Anal. Appl. Pyrolysis, Vol. 106, 2014, pp. 112-117.   DOI
38 S. He, Z. Mei, N. Liu, and L. Zhang, "Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming : Effect of nickel precursor", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 14429-14438.   DOI
39 R. da P. Fiuza, M. A. de Silva, and J. S. Boaventura, "Development of Fe-Ni/YSZ-GDC electrocatalysts for application as SOFC anodes: XRD and TPR characterization and evaluation in the ethanol steam reforming reaction", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 11216-11228.   DOI
40 S. Yeqin, Z. Ying, L. Hanfeng, Z. Zekai, and C. Yinfei, "Soot combustion performance and $H_2$‐TPR study on ceria‐based mixed oxides", Chinese J. Catal., Vol. 34, 2013, pp. 567-577.   DOI
41 B. F. Machado and P. Serp, "Graphene-based materials for catalysis", Catal. Sci. Technol., Vol. 2, 2012, pp. 54-75.   DOI
42 J. Chen and S. Wu, "Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties", Langmuir, Vol. 20, 2004, pp. 2233-2242.   DOI
43 B. Tian, Y. Qiao, Y. Tian, K. Xie, Q. Liu, and H. Zhou, "FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/$CS_2$ mixed solvent", Fuel Process. Technol., Vol. 154, 2016, pp. 210-218.   DOI
44 M. Hu, M. Laghari, B. Cui, B. Xiao, B. Zhang, and D. Guo, "Catalytic cracking of biomass tar over char supported nickel catalyst", Energy, Vol. 145, 2018, pp. 228-237.   DOI
45 M. Karnib, A. Kabbani, H. Holail, and Z. Olama, "Heavy metals removal using activated carbon, silica and silica activated carbon composite", Energy Procedia, Vol. 50, 2014, pp. 113-120.   DOI
46 Z. Li, G. Zhou, C. Li, and T. Cheng, "Effect of Pr on copper-based catalysts for ethane oxychlorination", Catal. Commun., Vol. 40, 2013, pp. 42-46.   DOI
47 D. Wierzbicki, R. Baran, R. Debek, M. Motak, T. Grzybek, M. E. Galvez, and P. Da, "The influence of nickel content on the performance of hydrotalcite-derived catalysts in $CO_2$ methanation reaction", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 23548-23555.   DOI
48 T. Van Haasterecht, M. Swart, K. P. De Jong, and J. H. Bitter, "Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming", J. Energy Chem., Vol. 25, 2016, pp. 289-296.   DOI
49 M. Wu, F. Chen, Y. Lai, and Y. Sie, "Electrocatalytic oxidation of urea in alkaline solution using nickel/nickel oxide nanoparticles derived from nickel-organic framework", Electrochim. Acta, Vol. 258, 2017, pp. 167-174.   DOI
50 H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, "XRD analysis of carbon stacking structure in coal during heat treatment", Fuel, Vol. 83, 2004, pp. 2427-2433.   DOI
51 E. Auer, A. Freund, J. Pietsch, and T. Tacke, "Carbons as supports for industrial precious metal catalysts", Appl. Catal. A: General, Vol. 173, 1998, pp. 259-271.   DOI
52 S. A. Speakman, "Estimating crystallite size using XRD", MIT, Center for Materials Science and Engineering, USA, 2012.
53 B. L. Dutrow and C. M. Clark, "X-ray Powder Diffraction (XRD)", Carleton College, USA, 2008.
54 J. A. Newman, P. D. Schmitt, S. J. Toth, F. Deng, S. Zhang, and G. J. Simpson, "Parts per million powder X-ray diffraction", Anal. Chem., Vol. 87, 2015, pp. 10950-10955.   DOI