• Title/Summary/Keyword: Particle Impact

Search Result 464, Processing Time 0.027 seconds

FREQUENCY SPECTRUM ANALYSIS OF ACOUSTIC EMISSION OF HARD DISK DRIVE HEAD/DISK INTERACTION

  • Chung, K.H.;Oh, J.K.;Moon, J.T.;Kim, D.E.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.273-274
    • /
    • 2002
  • In order to evaluate the flying characteristics of slider, the acoustic emission (AE) as well as friction signals are typically utilized. In this work the frequency spectrum analysis is performed using the AE signal obtained during the head/disk interaction such as load/unload mechanism using ramp, impact situation in the presence of a bump on disk surface and other contact phenomena including particle interaction. It was shown that the influence of impact can be characterized effectively in the AE frequency spectrum. As a result of this work, frequency spectrum analysis will be utilized with better understanding for studying the head/disk interface (HDI) characteristics and monitoring the particle interaction in HDI effectively.

  • PDF

Fluid-Structure Interaction Modeling and Simulation of CMP Process for Semiconductor Manufacturing

  • Sung, In-Ha;Yang, Woo-Yul;Kwark, Ha-Slomi;Yeo, Chang-Dong
    • 정보저장시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.60-64
    • /
    • 2011
  • Chemical mechanical planarization is one of the core processes in fabrication of semiconductors, which are increasingly used for information storage devices like solid state drives. For higher data capacity in storage devices, CMP process is required to show ultimate precision and accuracy. In this work, 2-dimensional finite element models were developed to investigate the effects of the slurry particle impact on microscratch generation and the phenomena generated at pad-particle-wafer contact interface. The results revealed that no plastic deformation and corresponding material removal could be generated by simple impact of slurry particles under real CMP conditions. From the results of finite element simulations, it could be concluded that the pad-particle mixture formed in CMP process would be one of major factors leading to microscratch generation.

Polypropylene fiber reinforced concrete plates under fluid impact. Part II: modeling and simulation

  • Korucu, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.225-235
    • /
    • 2016
  • Fluid impact tests on plates containing mesh reinforcement and polypropylene fibers were modeled and simulated using explicit finite element analysis software, LS-DYNA. The scabbing dimensions obtained by the experiments and the simulations were compared and crack formations were matched. The objective was to test the accuracy and fidelity of the model and to confirm that damage caused by fluid impact on the plates can be estimated with a reasonable accuracy over a wide range of impact velocity.

Analytical fragility curves of a structure subject to tsunami waves using smooth particle hydrodynamics

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1145-1167
    • /
    • 2016
  • This study presents a new method to computes analytical fragility curves of a structure subject to tsunami waves. The method uses dynamic analysis at each stage of the computation. First, the smooth particle hydrodynamics (SPH) model simulates the propagation of the tsunami waves from shallow water to their impact on the target structure. The advantage of SPH over mesh based methods is its capability to model wave surface interaction when large deformations are involved, such as the impact of water on a structure. Although SPH is computationally more expensive than mesh based method, nowadays the advent of parallel computing on general purpose graphic processing unit overcome this limitation. Then, the impact force is applied to a finite element model of the structure and its dynamic non-linear response is computed. When a data-set of tsunami waves is used analytical fragility curves can be computed. This study proves it is possible to obtain the response of a structure to a tsunami wave using state of the art dynamic models in every stage of the computation at an affordable cost.

비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동 (Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying)

  • 윤상훈;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.

화장품용 미분체 혼합공정에서의 분산특성 연구 (A Study of Mixing Characteristics for Cosmetic Pine Powder)

  • 이종옥;송건응
    • 대한화장품학회지
    • /
    • 제19권1호
    • /
    • pp.85-107
    • /
    • 1993
  • 화장품에 사용되는 미분체의 혼합특성을 알기 위하여 화장품용 미분체 혼합기인 ribbon mixer, powder mixer micropulverizer, fine impact mill에 미립자, 구상 및 판상의 형태를 가진 bulk powders를 혼합시간을 변화 시키면서 혼합하는 실험을 하였다. 혼합분체의 혼합정도를 평가하기 위하여 산화철을 tracer로 사용하였으며, 원료 및 혼합물의 particle size distribution, specific surface area, density 및 표면색상을 측정하였다. 미분체 혼합물의 혼합시간과 표면색상변화, 입도분포 및 비표면적과의 사이에 대수적 1차 상관관계가 성립되었고, 색상의 변화로부터 혼합정도를 평가할 수 있는 간단한 식을 도출하였다. 사용된 혼합기에 대해 혼합기구별 modelling과 혼합에 따른 입도 분포 및 비표면적의 변화로부터 혼합기 impellar tip에서의 linear velocity별 혼합기는 대류혼합, 전단혼합 및 확산혼합으로 분류되었다.

  • PDF

다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구 (Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses )

  • 류원희;최지우;양효석;신현철;심창훈;박재상
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.43-57
    • /
    • 2023
  • 우주 물체 및 우주 구조물의 초고속 충돌 시뮬레이션을 LS-DYNA를 사용하여 수행하였다. 구형, 원뿔형, 및 속이 빈 원통형의 다양한 형상의 우주 물체는 SPH(Smoothed Particle Hydrodynamics)를 사용하여 모델링하였다. 다양한 두께의 우주 구조물은 직접 충돌 영역과 간접 충돌 영역으로 나누어, 각각 SPH 및 유한 요소를 사용하여 나타내었다. 초고속 충돌에서 금속 재료의 비선형 거동을 나타내기 위하여 Johnson-cook 재료 모델과 Mie-Grüneisen 상태 방정식을 사용하였다. 우주 물체의 형상, 우주 구조물의 두께, 충돌 각도, 및 충돌 속도의 다양한 충돌 조건을 고려하였다. 파편운은 우주 물체와 우주 구조의 초고속 충돌로 인해 발생되며, 발생된 파편운의 형상을 정량적으로 분석하였다. 본 연구의 모든 충돌 조건에서, 원뿔 형상의 우주 물체로 인한 파편운이 가장 위험한 형상임을 확인하였다.

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact

  • Das, Raj;Cleary, Paul W.
    • Computers and Concrete
    • /
    • 제16권6호
    • /
    • pp.933-961
    • /
    • 2015
  • Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.

운석의 초고속 충돌 관통현상 해석을 위한 SPH 매개변수 (SPH Parameters for Analysis of Penetration Phenomenon at Hypervelocity Impact of Meteorite)

  • 이성수;서송원;민옥기
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1738-1747
    • /
    • 2003
  • Smoothed Particle Hydrodynamics (SPH), a pure Lagrangian numerical method, is applied to analysis of penetration phenomenon of bumper plate which is installed outside of spacecraft hull to protect the spacecraft against hypervelocity meteorite impact. Effects of SPH parameters, such as artificial viscosities, smoothing lengths, numbers of particles and time increments, are analysed by comparing the SPH simulation results with experimental ones with regard to subsequent formation of debris cloud. An optimum range of parameter values is determined by error analysis and various SPH numerical results are compared with experiments.

극대변형 해석을 위한 SPH 수치기법 개발 및 ExLO 코드 연계 (Integration of 3-Dim SPH Scheme into the ExLO Code)

  • 이민형;조영준
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.532-537
    • /
    • 2011
  • This paper describes the development of SPH(Smooth Particle Hydrodynamics) scheme and integration into the multi-material shock physics code(ExLO) for the purpose of the application to the extreme large deformation problems. SPH numerical scheme has been extended into the fluid dynamics and the high-speed impact events, such as space structure protection against space debris and meteorite catering. Like other hydrocodes, SPH scheme also solves the conservation equations with the constitutive equation including equation of state. The benchmark problem, Taylor-Impact test, was simulated and the predictions show good agreements with both the published numerical data and experimental data. Currently, the contact treatment between materials is under development.