• Title/Summary/Keyword: Particle

Search Result 15,934, Processing Time 0.037 seconds

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.

Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity (입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

Comparison on Nano-particle Number Measurement Characteristics for Different Particle Generators between Spray type and Soot Type (Spray type과 Soot type 입자발생기별 나노입자 개수농도분포 측정특성 비교)

  • Kim, M.S.;Kwon, J.W.;Chung, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.185-191
    • /
    • 2012
  • Particulate matters (PM) that is generated by most diesel engine is regulated by the mass concentration measured by the conventional method it had been. Recently, Europe PMP (Particle Measurement Program) decided to start the regulation of vehicle's nano-sized particle number (PN) from the year of 2011 because of nano-particle's higher degree of harm to the human body. So firstly, the standard level of PN emission is introduced in the Euro 5/6 emissions regulation with a limit of $6{\times}10^{11}$ per km for light duty vehicle. Also KPMP(Korea Particle Measurement Program) was organized to copy quickly international technical trend. In this paper, it was investigated the nano-sized PN measurement characteristics for different particle generators between spray type and soot type. And the difference ratio between particle generators, the characteristic of PN concentration, counting efficiency and linearity was analyzed. Then, we make conclusions as followed. When particle diameter is increased, counting efficiency of two generators is decreased. Also Secondary calibration method is more higher 3% than Primary calibration method. Finally, SOF which is included in soot particles is not totally removed so it have great influence on test result of counting efficiency and linearity.

Phosphorus Removal from Synthetic Wastewater by Waste Oyster Shells (폐굴껍질에 의한 합성폐수 중의 인 제거)

  • 정경훈;정오진;최형일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.43-49
    • /
    • 2000
  • A laboratory experiments were performed to investigate the effects of several factors on the phosphorus removal by waste oyster shells. The waste oyster shells used in this experiments were crushed particle, calcined particle and extracted solution. A higher efficiencies of phosphorus removal were observed, when a particle size of crushed and calcined particle were smaller. The effluent concentration of phosphorus was around 1.6mg/ι in continuous column experiment which packed with crushed particle of waste oyster shell at the influent concentration of PO4-P of 10 mg/ι. But the clogging of column occurred with increasing of throughput volume of influent. The efficiency of phosphorus removal increased with increasing of dosage amount of crushed, calcined particle and extracted solution. When the calcined particle which contained only about 1/10~1/100 of crushed particle was used, the efficiency of phosphorus removal was correspondingly equivalent to the removal efficiency obtained from crushed particle. The efficiency of phosphorus removal by calcined particle after 9 runs repeated use was decreased about 21.5% as that of the first run. The removal efficiency of 100% could have been achieved at the HRT of 18 hours during the continuous treatment of phosphorus by the solution extracted from calcined particle.

  • PDF

The characteristics of AC-PDPs According to binary and ternary gas mixtures of He-Ne-Xe_

  • Lee, H.J.;Son, C.G.;Lee, S.B.;Han, Y.K.;Jeoung, S.H.;You, N.L.;Lim, J.E.;Lee, J.H.;Moon, M.W.;Oh, P.Y.;Jeoung, J.M.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1195-1198
    • /
    • 2005
  • The improvement of efficiency is the one of the most important part in AC PDPs . To achieve high efficiency, high VUV emission efficiency and High ion induces secondary electron emission coefficient are needed. We have measured the emission spectra of vacuum ultraviolet rays and ion induced secondary electron emission coefficient of MgO protective layer in surface discharge AC-PDP with binary and ternary gas mixtures. We have investigated electro-optical characteristics of AC-PDPs to optimum gas mixture for high efficient.

  • PDF

A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System (Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구)

  • Mun, Ji-Hun;Shin, Yong-Hyun;Kim, Tae-Sung;Kang, Sang-Woo
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

Comparison of particle size distribution and particle number concentration measured by APS 3321 and Dust Monitor 1.108 (APS 3321과 Dust Monitor 1.108을 이용한 입자 크기분포 및 수농도 측정결과 비교)

  • Lim, Kyoung-Soo;Park, Hyun-Seol
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.63-70
    • /
    • 2009
  • The size distribution and number concentration of atmospheric aerosol were measured and compared using APS 3321 and Dust Monitor 1.108. The particle size distribution and number concentration measured by two devices were also compared at a particle generation system of standard PSL and fly ash. The number concentration of atmospheric aerosol measured by APS was higher than that by Dust Monitor in particle size range of less than $3.0{\mu}m$, but there was good accordance between them in particle size range of over $3.0{\mu}m$. In the particle generation system of PSL and fly ash, different measurement results were shown because the particle concentration was higher than that of atmospheric aerosol. The number concentration measured by Dust Monitor was higher than that by APS in most particle size ranges. However, the peak concentration of PSL particles measured by Dust Monitor was lower than that by APS. The difference of the collection efficiency in a scrubber by APS and Dust Monitor measurement was less than 10%, but in the particle size of $1.5{\mu}m$, it was over 20%.

  • PDF

Effect of particle migration on the heat transfer of nanofluid

  • Kang, Hyun-Uk;Kim, Wun-Gwi;Kim, Sung-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.99-107
    • /
    • 2007
  • A nanofluid is a mixture of solid nanoparticles and a common base fluid. Nanofluids have shown great potential in improving the heat transfer properties of liquids. However, previous studies on the characteristics of nanofluids did not adequately explain the enhancement of heat transfer. This study examined the distribution of particles in a fluid and compared the mechanism for the enhancement of heat transfer in a nanofluid with that in a general microparticle suspension. A theoretical model was formulated with shear-induced particle migration, viscosity-induced particle migration, particle migration by Brownian motion, as well as the inertial migration of particles. The results of the simulation showed that there was no significant particle migration, with no change in particle concentration in the radial direction. A uniform particle concentration is very important in the heat transfer of a nanofluid. As the particle concentration and effective thermal conductivity at the wall region is lower than that of the bulk fluid, due to particle migration to the center of a microfluid, the addition of microparticles in a fluid does not affect the heat transfer properties of that fluid. However, in a nanofluid, particle migration to the center occurs quite slowly, and the particle migration flux is very small. Therefore, the effective thermal conductivity at the wall region increases with increasing addition of nanoparticles. This may be one reason why a nanofluid shows a good convective heat transfer performance.

Physical and Mechanical Properties of Sludge-Particle Board Manufactured by Composition Types and Composition Ratios from Mixed or Layered Paper Sludge and Wood Particle (구성형태(構成形態)와 구성비율별(構成比率別)로 제조(製造)한 슬러지-파티클보드의 물리적(物理的) 및 기계적(機械的) 성질(性質))

  • Lee, Phill-Woo;Yoon, Hyoung-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.17-26
    • /
    • 1996
  • This research was accomplished to evaluate possibility of using paper sludge for the raw materials of wood based panel products. The experimental panels were manufactured by four mixed ratios, the proportion of paper sludge to wood particle: 20:80, 30:70, 40:60, 50:50% (oven dry weight basis) and by three composition types, sludge-particle mixed board, three layered sludge-particle board and three layered particle board. They were tested mechanical (bending strength and internal bond) and physical properties (water absorption, thickness swelling and linear expansion). From the results they were shown that bending strength of mixed and three layered sludge-particle board were decreased with increasing of composition ratios of sludge. And the mechanical and physical properties of the boards of three layered composition types have superior to those of mixed composition type. Although composition ratios of sludge increased, the internal bond strength and dimensional stability of sludge-particle board not decreased quantitatively. We concluded that the mechanical and physical properties of three layered sludge-particle board were similar w those of three layered particle-board (control) made by our laboratory design. Therefore, it was recognized that paper sludge can be used as potential raw material in particle-board manufacturing industry.

  • PDF

Characteristics of Particle Deposition onto the Cleanroom Wall Panel with Electrostatic Voltages (정전압에 따른 클린룸 벽체에서의 입자침착 특성)

  • Noh, Kwang-Chul;Son, Young-Tae;Kim, Jong-Jun;Oh, Myung-Do
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1033-1038
    • /
    • 2006
  • We carried out the experiments on particle deposition onto the cleanroom wall panels. And then we investigated the particle deposition characteristic coefficients for electrostatic voltages and particle size. It was found that there is little difference in characteristics of the particle deposition between the steel panel and the anti-static coating panel. In case of that the particle size is under $1.0{\mu}m$, the particle deposition characteristic coefficient becomes larger as the electrostatic voltage induced to the cleanroom wall panel is increasing. Where in case of that the particle size is over $3.0{\mu}m$, the particle deposition characteristic coefficients do not show any differences with the electrostatic voltages. It is due to that the electrostatic force is the major particle transport mechanism for submicron particles, while the gravitational settling is the major particle transport mechanism for overmicron particles when the electro-static voltages are induced to the cleanroom wall panel.