• Title/Summary/Keyword: Parity check

Search Result 274, Processing Time 0.023 seconds

Improvement of Feedback Delay for Practical Distributed Source Coding (실제적인 분산 비디오 부호화를 위한 분산 소스 부호화 시스템의 피드백 지연 문제 개선 방안)

  • Shin, Seung-Shik;Shin, Sang-Yun;Jang, Min;Lim, Dae-Woon;Kim, Sang-Hyo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.122-128
    • /
    • 2012
  • Because of the system delay caused by the number of feedback retransmission in Distributed Video Coding (DVC) scheme, it is difficult to realize practical DVC in many cases. In this paper low feedback retransmission Distributed Source Coding (DSC) scheme is proposed for practical DVC scheme based on Low-Density Parity-Check (LDPC) codes because DVC system is an specific application of DSC system. This DSC scheme is achieved by using different LDPC codes optimized in each different compression rate and using source revealing scheme. Optimized LDPC codes provide us much better decoding performance which causes the 57% reduced number of iteration. Consequently, the number of feedback retransmission is decreased by 50%.

An analysis of the effects of LLR approximation on LDPC decoder performance (LLR 근사화에 따른 LDPC 디코더의 성능 분석)

  • Na, Yeong-Heon;Jeong, Sang-Hyeok;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.405-409
    • /
    • 2009
  • In this paper, the effects of LLR (Log-Likelihood Ratio) approximation on LDPC (Low-Density Parity-Check) decoder performance are analyzed, and optimal design conditions of LDPC decoder are derived. The min-sum LDPC decoding algorithm which is based on an approximation of LLR sum-product algorithm is modeled and simulated by MATLAB, and it is analyzed that the effects of LLR approximation bit-width and maximum iteration cycles on the bit error rate (BER) performance of LDCP decoder. The parity check matrix for IEEE 802.11n standard which has block length of 1,944 bits and code rate of 1/2 is used, and AWGN channel with QPSK modulation is assumed. The simulation results show that optimal BER performance is achieved for 7 iteration cycles and LLR bit-width of (7,5).

  • PDF

Development of A Recovery Algorithm for Sparse Signals based on Probabilistic Decoding (확률적 희소 신호 복원 알고리즘 개발)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.409-416
    • /
    • 2017
  • In this paper, we consider a framework of compressed sensing over finite fields. One measurement sample is obtained by an inner product of a row of a sensing matrix and a sparse signal vector. A recovery algorithm proposed in this study for sparse signals based probabilistic decoding is used to find a solution of compressed sensing. Until now compressed sensing theory has dealt with real-valued or complex-valued systems, but for the processing of the original real or complex signals, the loss of the information occurs from the discretization. The motivation of this work can be found in efforts to solve inverse problems for discrete signals. The framework proposed in this paper uses a parity-check matrix of low-density parity-check (LDPC) codes developed in coding theory as a sensing matrix. We develop a stochastic algorithm to reconstruct sparse signals over finite field. Unlike LDPC decoding, which is published in existing coding theory, we design an iterative algorithm using probability distribution of sparse signals. Through the proposed recovery algorithm, we achieve better reconstruction performance as the size of finite fields increases. Since the sensing matrix of compressed sensing shows good performance even in the low density matrix such as the parity-check matrix, it is expected to be actively used in applications considering discrete signals.

Fast Implementation of the Progressive Edge-Growth Algorithm

  • Chen, Lin;Feng, Da-Zheng
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.240-242
    • /
    • 2009
  • A computationally efficient implementation of the progressive edge-growth algorithm is presented. This implementation uses an array of red-black (RB) trees to manage the layered structure of check nodes and adopts a new strategy to expand the Tanner graph. The complexity analysis and the simulation results show that the proposed approach reduces the computational effort effectively. In constructing a low-density parity check code with a length of $10^4$, the RB-tree-array-based implementation takes no more 10% of the time required by the original method.

  • PDF

XOR-based High Quality Information Hiding Technique Utilizing Self-Referencing Virtual Parity Bit (자기참조 가상 패리티 비트를 이용한 XOR기반의 고화질 정보은닉 기술)

  • Choi, YongSoo;Kim, HyoungJoong;Lee, DalHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.156-163
    • /
    • 2012
  • Recently, Information Hiding Technology are becoming increasingly demanding in the field of international security, military and medical image This paper proposes data hiding technique utilizing parity checker for gray level image. many researches have been adopted LSB substitution and XOR operation in the field of steganography for the low complexity, high embedding capacity and high image quality. But, LSB substitution methods are not secure through it's naive mechanism even though it achieves high embedding capacity. Proposed method replaces LSB of each pixel with XOR(between the parity check bit of other 7 MSBs and 1 Secret bit) within one pixel. As a result, stego-image(that is, steganogram) doesn't result in high image degradation. Eavesdropper couldn't easily detect the message embedding. This approach is applying the concept of symmetric-key encryption protocol onto steganography. Furthermore, 1bit of symmetric-key is generated by the self-reference of each pixel. Proposed method provide more 25% embedding rate against existing XOR operation-based methods and show the effect of the reversal rate of LSB about 2% improvement.

A Study on the Improved Parity Check Receiver for the Extended m-sequence Based Multi-code Spread Spectrum System with Code Set Partitioning and Constant Amplitude Precoding (코드집합 분할 방식의 확장 m-시퀀스 기반 정진폭 멀티코드 대역확산 통신 시스템을 위한 개선된 패리티 검사 기반 수신기에 관한 연구)

  • Han, Jun-Sang;Kim, Dong-Joo;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.1-11
    • /
    • 2012
  • The multi-code spread spectrum communication system, which spreads data bit stream by multiplexing orthogonal codes, can transmit data in high rate. However it needs the high-cost good linear amplifier because of the multi-level output signal. In order to overcome this drawback several systems making the amplitude of output signal constant with Walsh codes have been proposed. Recently constant amplitude pre-coded multi-code spread spectrum systems using extended m-sequence have been proposed. In this paper we consider an extended m-sequence based constant amplitude multi-code spread spectrum system with code set partitioning. By grouping the orthogonal codes into 4 subsets, not only is the computational complexity of the transceiver reduced but BER performance also improves. It has been shown that parity checking on four detected codes at the receiver can correct code detection error and result in BER performance enhancement. In this paper we propose a improved parity check receiver. We carried out computer simulation to verify feasibility of the proposed algorithm.

Study on the Construction Method of QC LDPC Codes in ST-BICM Systems for Full Diversity (시공간 비트 인터리브된 부호화 변조 시스템에서 최대 다이버시티를 달성하기 위한 준순환 저밀도 패리티 검사 부호의 생성 연구)

  • Kim, Sung-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.151-156
    • /
    • 2012
  • In this paper, design of quasi-cyclic(QC) low-density parity-check codes is proposed to have full diversity for space-time bit-interleaved coded modulation(ST-BICM) systems. Necessary and sufficient conditions that the proposed scheme has full diversity are proved as the condition that submatrices corresponding to the system part of codewords are invertible. And new construction method of binary invertible matrices for QC LDPC codes in ST-BICM systems are also proposed and modification for parity-check matrices are also explained.

Comparison of EXIT chart generation for LDPC and turbo codes (시뮬레이션 기법을 이용한 LDPC 부호와 터보부호에 대한 EXIT 차트 생성 비교)

  • Nyamukondiwa, Ramson Munyaradzi;Kim, Sooyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.73-77
    • /
    • 2015
  • In this paper, we present two simulation methods to investigate the effect of excluding bit errors on generating the extrinsic information transfer (EXIT) chart for low density parity check (LDPC) and turbo codes. We utilized the simulation methods including and excluding bit errors to generate EXIT chart which was originally proposed for turbo codes. The generated EXIT charts for LDPC and turbo codes shows that the presented methods appropriately demonstrates the performance behaviours of iterative decoding for LDPC and turbo codes. Analysis on the simulation results demonstrates that the EXIT chart excluding the bit errors shows only a small part of the curves where the amount of information is too large.

An analysis of Multi-mode LDPC Decoder Performance for IEEE 802.11n WLAN (IEEE 802.11n WLAN용 Multi-mode LDPC 복호기의 성능 분석)

  • Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.80-83
    • /
    • 2010
  • This paper describes an analysis of decoding performance of multi-mode LDPC(Low Density Parity Check) decoder which supports three block lengths (648, 1296, 1944) and four code rates (1/2, 2/3,3/4, 5/6) for IEEE 802.11n WLAN system. A fixed-point model of LDPC decoder which adopts min-sum algorithm and layered decoding scheme is implemented using Matlab. From fixed-point simulation results for various bit-width parameters such as internal bit-width, bit-width of integer and fractional parts, an optimal design condition and decoding performance of LDPC decoder are analyzed.

  • PDF