
240 Lin Chen et al. © 2009 ETRI Journal, Volume 31, Number 2, April 2009

ABSTRACT⎯A computationally efficient implementation of
the progressive edge-growth algorithm is presented. This
implementation uses an array of red-black (RB) trees to
manage the layered structure of check nodes and adopts a new
strategy to expand the Tanner graph. The complexity analysis
and the simulation results show that the proposed approach
reduces the computational effort effectively. In constructing a
low-density parity check code with a length of 104, the RB-tree-
array-based implementation takes no more 10% of the time
required by the original method.

Keywords⎯LDPC code, progressive edge-growth algorithm,
red-black tree.

I. Introduction
The progressive edge-growth (PEG) algorithm, introduced

by Hu and others [1], is an effective approach to constructing
low-density parity check (LDPC) codes with large girth. The
PEG construction builds the Tanner graph for an LDPC code
by establishing edges between the variable nodes and the check
nodes in an edge-by-edge manner and maximizing the local
girth in a greedy fashion. The key point of this algorithm is the
search for the most distant check node. In [1], an indicator-
based tree expansion of a Tanner graph is used to find the
check nodes which are furthest from the root node. Then, a
linear search is adopted to locate the check nodes with the
lowest degree among them. This approach is simple but not
efficient enough. In the case of long codes, the construction of
LDPC codes with this approach requires long time
consumption [2].

Inspired by the computationally optimal metric-first stack

Manuscript received Nov. 11, 2008; revised Jan. 15, 2009; accepted Feb. 18, 2009.
Lin Chen (phone: + 86 29 8820 0000, email: lchen30@gmail.com) and Da-Zheng Feng

(email: dzfeng@mail.xidian.edu.cn) are with the National Laboratory of Radar Signal
Processing, Xidian University, Shaanxi, China.

algorithm presented in [3], we propose a computationally
efficient implementation of the PEG algorithm. An array of
red-black (RB) trees [4] is used to manage the layered structure
of the check nodes, and dynamic adjustments of this structure
are adopted to partly replace the tree expansion of the Tanner
graph. Compared with the existing approach in [1], the
complexity of this RB-tree-array-based implementation is
significantly lower.

II. RB-Tree-Array-Based Implementation

1. Layered Structure of Check Nodes

As shown in the left part of Fig. 1, the tree expansion [1] of a
Tanner graph from the variable node sj partitions the check
nodes into layers according to their respective shortest
distances from sj. The layered structure is represented by the set

{ }1 0 1, , ,
j j j j

N
s s s sL L L L− −= , where the subscript sj denotes the

variable node from which the structure results, and the
superscript l (1, 1, , 1l N= − −) identifies the layer so that

j

l
sL represents the set of the check nodes in the layer l. Note

that the check nodes that are not connected to sj in the current
Tanner graph constitute a special layer with the label –1.
Assume that the variable node sj has

jsd edges linked to it, and
let

j

k
sE (0)

jsk d≤ < denote the k-th edge. The layered
structure

jsL is built up after the first edge 0
jsE has been

established. However,
jsL is changed by the newly added

edge
j

k
sE (1),

jsk d≤ < which introduces new paths into the
graph. Whenever a check node gets a shorter path from sj, its
location should be correspondingly adjusted from one layer to
another. Therefore, set

j

l
sL varies dynamically and may be null

after adjustments.

Fast Implementation of the
Progressive Edge-Growth Algorithm

 Lin Chen and Da-Zheng Feng

ETRI Journal, Volume 31, Number 2, April 2009 Lin Chen et al. 241

Fig. 1. Layered structure from Sj and the RB-tree array.

0

jSL

C-nodes
Sj

Layer 0

Layer 1

Layer N–1

Layer –1

… …

… ……

… ……

…
… …

…

…

.

.

.

1

jSL

1

j

N
SL −

1

jSL−

2. Data Structure

To assist the management of
jsL with an RB-tree array, the

following data structure is adopted to represent a check node. A
check node ci includes four fields: an identifier number (id), the
distance from the current root node (dist), the current link
degree (deg), and a pointer table (vTable) which records the
variable nodes that are linked to ci in the current Tanner graph.
The dynamic set

j

l
sL is then implemented by the insertion of

all check nodes within layer l into an RB tree, and all these RB
trees are arranged into an array according to the label l to
represent

jsL as shown in the right part of Fig. 1. The RB-tree
array sorts its elements (RB trees) according to the dist since all
the check nodes within an RB tree have the same dist. The
check nodes in an RB tree are sorted mainly according to their
deg. Considering the fact that the check nodes within the same
layer may have the same deg but different id, the following
“less than” comparison rule is defined to sort the check nodes
during the insertion process. For two check nodes, ci and cj, we
can judge whether ci<cj by the following procedure:

()if . .i jc deg c deg==
return . .i jc id c id< ;

else
return . .i jc deg c deg< .

Also, to trace the deg variation of every check node, another
RB tree Tg is built to sort all the check nodes globally according
to the deg attribute using the same comparison rule.

3. Implementation of the PEG algorithm

We describe the RB-tree-array-based implementation of the
PEG algorithm for constructing a Tanner graph with m check
nodes and n variable nodes in the following C-style pseudo-

code:

Initialize Tg as a null tree;
for i=0 to m–1 {

. , . 1, . 0i i ic id i c dist c deg= = − = ;
Insert ci into Tg;

}
for j=0 to n–1 {

Step 1. Link ci to sj, where ci is a check node in Tg with the
lowest degree, and update the location of ci in Tg;

Step 2. Expand the graph from sj to construct the RB-tree
array

jsL and record every check node’s shortest
distance from sj in its dist field;

Step 3. For 1 to 1jk d= − {
Step 3.1. Link ci to sj, where ci is a check node with

the lowest degree in the furthest layer, and
update the location of ci in Tg;

Step 3.2. From ci, recursively adjust ;
jsL

}
Step 4. Clear the RB tree array ,

jsL and reset the dist
field of every check node to–1;

}
Destroy the tree Tg;

There are several subtle points in this algorithm that need
further comment. The update of Tg in step 1 and step 3.1 is
achieved through the following steps: locate and delete ci from
Tg, let . . 1i ic deg c deg= + , and then re-insert ci into Tg. The
adjustment of

jsL in step 3.2 is performed in a similar manner.
If a check node ci in

j

l
sL gets a new distance 'l and ' ,l l<

locate and delete ci from
j

l
sL , let '. ,ic dist l= and then re-

insert ci into
'

.
j

l
sL Whenever we encounter multiple choices of ci

in step 1 or step 3.1, we can adopt the same strategy as that
adopted in [1].

III. Complexity Analysis and Comparison

Since the PEG algorithm builds a Tanner graph in an edge-
by-edge manner, both the RB-tree-array-based implementation
presented here and the approach in [1] have linear complexity
with respect to the total number of edges in the Tanner graph.
However, the average effort of placing one edge differs in the
two methods. Compared with the approach in [1], the RB-tree-
array-based implementation reduces the computational effort in
two respects. First, the RB-tree data structure guarantees that
the basic dynamic-set operations, such as searching, inserting,
and deleting take O(log m) time in the worst case [4], where m
is the number of the check nodes. The arrangement of the RB
trees into an array further reduces the searching complexity as
it decouples the sorting of check nodes according to the dist

242 Lin Chen et al. ETRI Journal, Volume 31, Number 2, April 2009

from that according to the deg. The operation of choosing one
check node has logarithmic complexity rather than linear
complexity in the indicator-based implementation. Note that
the adoption of an RB-tree array to manage

jsL also facilitates
dynamic adjustment of .

jsL The adjustment of a single check
node can be finished in O(log m) time since it is realized
through three operations on a RB tree. Second, in the RB-tree-
array-based implementation, the tree-expansion of the Tanner
graph needs to be performed only once (in step 2) for every
variable node. When

jsL is changed by the newly added edge,
we perform the dynamic adjustment of

jsL rather than re-
expanding the Tanner graph from the beginning. Because only
some of the check nodes whose locations are influenced by the
newly added edges ()1

j j

k
s sE k d≤ < and the adjustment of a

single node have logarithmic complexity, the dynamic
adjustment of

jsL is more efficient than the reconstruction of

jsL through a new tree-expansion of the Tanner graph [1].
These two measures effectively reduce the complexity of the
PEG algorithm without any performance loss.

To compare the complexity of the RB-tree-array-based
implementation with the indicator-based one in [1], we
constructed two groups of rate-1/2 LDPC codes with different
degree distributions. These two degree distributions, with
maximum variable node degrees of 20 and 15, respectively, are
all from table II in [5]. For a fair comparison, we always chose
the check node with the smallest id in both implementations
when there existed multiple choices for ci, which ensured that
the Tanner graphs constructed by these two methods would be
the same. A comparison of the construction time is shown in
Fig. 2. The curves marked with hollow symbols (circle or
triangle) are for the indicator-based method in [1], and the ones
with solid symbols are for our method. The curves of our
presented RB-tree-array method increase much more slowly

Fig. 2. Construction time comparison of different implementations
of PEG algorithm.

2,000 4,000 6,000 8,000 10,000
0

500

1,000

1,500

2,000

2,500

Code length

 Maximum degree 20, method in [1]
 Maximum degree 20, presented method
 Maximum degree 15, method in [1]
 Maximum degree 15, presented method

Ti
m

e
(s

)

than those of the indictor-based method. For the construction of
the 104 long LDPC codes with the degree distributions of 20
and 15, it takes 2,393 seconds and 1,888 seconds, respectively,
with the method in [1]. By contrast, only 153 seconds and 141
seconds are needed with our method.

IV. Conclusion

We presented a novel low-complexity implementation of the
PEG algorithm which takes advantage of the RB-tree-array
data structure. On the basis of this data structure, an efficient
tree-expansion strategy was adopted. The complexity analysis
and simulation results demonstrated that the proposed
implementation reduces the computational effort effectively,
and it can be used to quickly construct long LDPC codes with
large girth.

References

[1] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold “Regular and
Irregular Progressive Edge-Growth Tanner Graphs,” IEEE Trans.
Inform. Theory, vol. 51, no. 1, Jan. 2005, pp. 386-398.

[2] M. Andersson, Graph Optimization for Sparse Graph Codes, M.S.
thesis, KTH, Stockholm, Sweden 2007, Available online:
http://www.ee.kth.se/php/modules/publications/reports/2007/IR-
SB-XR-EE-KT%202007:001.pdf

[3] S. Mohan and J. Anderson, “Computationally Optimal Metric
First Code Tree Search Algorithms,” IEEE Trans. Comm., vol. 32,
no. 6, June 1984, pp. 710-717.

[4] T. Cormen et al., Introduction to Algorithms (Second Edition),
MIT Press, Cambridge, Massachusetts London, 2001.

[5] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design of
Capacity-Approaching Irregular Low-Density Parity-Check
Codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, Feb. 2001, pp.
619-637.

