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ABSTRACT⎯A computationally efficient implementation of 
the progressive edge-growth algorithm is presented. This 
implementation uses an array of red-black (RB) trees to 
manage the layered structure of check nodes and adopts a new 
strategy to expand the Tanner graph. The complexity analysis 
and the simulation results show that the proposed approach 
reduces the computational effort effectively. In constructing a 
low-density parity check code with a length of 104, the RB-tree-
array-based implementation takes no more 10% of the time 
required by the original method. 

Keywords⎯LDPC code, progressive edge-growth algorithm, 
red-black tree. 

I. Introduction 
The progressive edge-growth (PEG) algorithm, introduced 

by Hu and others [1], is an effective approach to constructing 
low-density parity check (LDPC) codes with large girth. The 
PEG construction builds the Tanner graph for an LDPC code 
by establishing edges between the variable nodes and the check 
nodes in an edge-by-edge manner and maximizing the local 
girth in a greedy fashion. The key point of this algorithm is the 
search for the most distant check node. In [1], an indicator-
based tree expansion of a Tanner graph is used to find the 
check nodes which are furthest from the root node. Then, a 
linear search is adopted to locate the check nodes with the 
lowest degree among them. This approach is simple but not 
efficient enough. In the case of long codes, the construction of 
LDPC codes with this approach requires long time 
consumption [2]. 

Inspired by the computationally optimal metric-first stack 
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algorithm presented in [3], we propose a computationally 
efficient implementation of the PEG algorithm. An array of 
red-black (RB) trees [4] is used to manage the layered structure 
of the check nodes, and dynamic adjustments of this structure 
are adopted to partly replace the tree expansion of the Tanner 
graph. Compared with the existing approach in [1], the 
complexity of this RB-tree-array-based implementation is 
significantly lower. 

II. RB-Tree-Array-Based Implementation 

1. Layered Structure of Check Nodes 

As shown in the left part of Fig. 1, the tree expansion [1] of a 
Tanner graph from the variable node sj partitions the check 
nodes into layers according to their respective shortest 
distances from sj. The layered structure is represented by the set 

{ }1 0 1, , ,
j j j j

N
s s s sL L L L− −= , where the subscript sj denotes the 

variable node from which the structure results, and the 
superscript l ( 1, 1, , 1l N= − − ) identifies the layer so that 

j

l
sL  represents the set of the check nodes in the layer l. Note 

that the check nodes that are not connected to sj in the current 
Tanner graph constitute a special layer with the label –1. 
Assume that the variable node sj has 

jsd edges linked to it, and 
let 

j

k
sE (0 )

jsk d≤ <  denote the k-th edge. The layered 
structure 

jsL is built up after the first edge 0
jsE has been 

established. However, 
jsL is changed by the newly added 

edge 
j

k
sE (1 ),

jsk d≤ <  which introduces new paths into the 
graph. Whenever a check node gets a shorter path from sj, its 
location should be correspondingly adjusted from one layer to 
another. Therefore, set 

j

l
sL varies dynamically and may be null 

after adjustments. 
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Fig. 1. Layered structure from Sj and the RB-tree array. 
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2. Data Structure 

To assist the management of 
jsL with an RB-tree array, the 

following data structure is adopted to represent a check node. A 
check node ci includes four fields: an identifier number (id), the 
distance from the current root node (dist), the current link 
degree (deg), and a pointer table (vTable) which records the 
variable nodes that are linked to ci in the current Tanner graph. 
The dynamic set 

j

l
sL is then implemented by the insertion of 

all check nodes within layer l into an RB tree, and all these RB 
trees are arranged into an array according to the label l to 
represent 

jsL as shown in the right part of Fig. 1. The RB-tree 
array sorts its elements (RB trees) according to the dist since all 
the check nodes within an RB tree have the same dist. The 
check nodes in an RB tree are sorted mainly according to their 
deg. Considering the fact that the check nodes within the same 
layer may have the same deg but different id, the following 
“less than” comparison rule is defined to sort the check nodes 
during the insertion process. For two check nodes, ci and cj, we 
can judge whether ci<cj by the following procedure: 

( )if . .i jc deg c deg==  
return . .i jc id c id< ; 

else 
return . .i jc deg c deg< . 

Also, to trace the deg variation of every check node, another 
RB tree Tg is built to sort all the check nodes globally according 
to the deg attribute using the same comparison rule. 

3. Implementation of the PEG algorithm 

We describe the RB-tree-array-based implementation of the 
PEG algorithm for constructing a Tanner graph with m check 
nodes and n variable nodes in the following C-style pseudo-

code:  

Initialize Tg as a null tree; 
for i=0 to m–1 { 

. , . 1, . 0i i ic id i c dist c deg= = − = ; 
Insert ci into Tg; 

} 
for j=0 to n–1 { 

Step 1. Link ci to sj, where ci is a check node in Tg with the 
lowest degree, and update the location of ci in Tg; 

Step 2. Expand the graph from sj to construct the RB-tree 
array

jsL and record every check node’s shortest 
distance from sj in its dist field; 

Step 3. For 1 to 1jk d= −  { 
Step 3.1. Link ci to sj, where ci is a check node with 

the lowest degree in the furthest layer, and 
update the location of ci in Tg; 

Step 3.2. From ci, recursively adjust ;
jsL  

} 
Step 4. Clear the RB tree array ,

jsL  and reset the dist 
field of every check node to–1; 

} 
Destroy the tree Tg; 

There are several subtle points in this algorithm that need 
further comment. The update of Tg in step 1 and step 3.1 is 
achieved through the following steps: locate and delete ci from 
Tg, let . . 1i ic deg c deg= + , and then re-insert ci into Tg. The 
adjustment of 

jsL in step 3.2 is performed in a similar manner. 
If a check node ci in 

j

l
sL gets a new distance 'l  and ' ,l l<  

locate and delete ci from 
j

l
sL , let '. ,ic dist l=  and then re-

insert ci into
'

.
j

l
sL Whenever we encounter multiple choices of ci 

in step 1 or step 3.1, we can adopt the same strategy as that 
adopted in [1]. 

III. Complexity Analysis and Comparison 

Since the PEG algorithm builds a Tanner graph in an edge-
by-edge manner, both the RB-tree-array-based implementation 
presented here and the approach in [1] have linear complexity 
with respect to the total number of edges in the Tanner graph. 
However, the average effort of placing one edge differs in the 
two methods. Compared with the approach in [1], the RB-tree-
array-based implementation reduces the computational effort in 
two respects. First, the RB-tree data structure guarantees that 
the basic dynamic-set operations, such as searching, inserting, 
and deleting take O(log m) time in the worst case [4], where m  
is the number of the check nodes. The arrangement of the RB 
trees into an array further reduces the searching complexity as 
it decouples the sorting of check nodes according to the dist 
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from that according to the deg. The operation of choosing one 
check node has logarithmic complexity rather than linear 
complexity in the indicator-based implementation. Note that 
the adoption of an RB-tree array to manage 

jsL also facilitates 
dynamic adjustment of .

jsL  The adjustment of a single check 
node can be finished in O(log m) time since it is realized 
through three operations on a RB tree. Second, in the RB-tree-
array-based implementation, the tree-expansion of the Tanner 
graph needs to be performed only once (in step 2) for every 
variable node. When 

jsL is changed by the newly added edge, 
we perform the dynamic adjustment of 

jsL rather than re-
expanding the Tanner graph from the beginning. Because only 
some of the check nodes whose locations are influenced by the 
newly added edges ( )1

j j

k
s sE k d≤ <  and the adjustment of a 

single node have logarithmic complexity, the dynamic 
adjustment of 

jsL is more efficient than the reconstruction of 

jsL through a new tree-expansion of the Tanner graph [1]. 
These two measures effectively reduce the complexity of the 
PEG algorithm without any performance loss. 

To compare the complexity of the RB-tree-array-based 
implementation with the indicator-based one in [1], we 
constructed two groups of rate-1/2 LDPC codes with different 
degree distributions. These two degree distributions, with 
maximum variable node degrees of 20 and 15, respectively, are 
all from table II in [5]. For a fair comparison, we always chose 
the check node with the smallest id in both implementations 
when there existed multiple choices for ci, which ensured that 
the Tanner graphs constructed by these two methods would be 
the same. A comparison of the construction time is shown in 
Fig. 2. The curves marked with hollow symbols (circle or 
triangle) are for the indicator-based method in [1], and the ones 
with solid symbols are for our method. The curves of our 
presented RB-tree-array method increase much more slowly 

 

  

Fig. 2. Construction time comparison of different implementations 
of PEG algorithm. 
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than those of the indictor-based method. For the construction of 
the 104 long LDPC codes with the degree distributions of 20 
and 15, it takes 2,393 seconds and 1,888 seconds, respectively,  
with the method in [1]. By contrast, only 153 seconds and 141 
seconds are needed with our method. 

IV. Conclusion 

We presented a novel low-complexity implementation of the 
PEG algorithm which takes advantage of the RB-tree-array 
data structure. On the basis of this data structure, an efficient 
tree-expansion strategy was adopted. The complexity analysis 
and simulation results demonstrated that the proposed 
implementation reduces the computational effort effectively, 
and it can be used to quickly construct long LDPC codes with 
large girth. 
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