• Title/Summary/Keyword: Parasitic motion

Search Result 18, Processing Time 0.021 seconds

Design of High frequency Vibration Mechanism with PZT actuator for Ultraprecision Laser Machining (압전구동기를 이용한 초정밀레이저 가공의 고주파진동 장치설계)

  • Kim, Hyun-Uk;Hwang, Dong-Hyun;Park, Jong-Kweon;Cho, Sung-Hak;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.419-425
    • /
    • 2010
  • To machine the micro hole, laser machining system is widely used, however, the system cannot fabricate the micro hole with high aspect ratio and good surface finish. To break the obstacles, the high frequency vibration mechanism with PZT (Piezoelectric Transducers) is proposed in this paper. The mechanism will vibrate the laser beam in vertical direction so that the aspect ratio and surface finish may be higher than the conventional. The mechanism vibrates the eyepiece of laser optics. In addition to the benefits, the mechanism enables us to have high precision and flexibility. It decreases burr and debris during machining. And it is able to machine various materials of workpiece. This research include high frequency and large travel range of the proposed mechanism. The PZT motion of mechanism and analysis on the sensitivity of design parameters are extracted from a finite element method (FEM) simulation. In the analysis, the target vibration mode without parasitic motion is designated to have the target frequency and high amplitude.

Design and Modeling of a 6-dof Stage for Ultra-Precision Positioning (초정밀 구동을 위한 6 자유도 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Park, Jong-Ho;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.106-113
    • /
    • 2009
  • A 6-DOF precision stage was developed based on parallel kinematics structure with flexure hinges to eliminate backlash, stick-slip and friction and to minimize parasitic motion coupled with motions in the other-axis directions. For the stage, lever linkage mechanism was devised to reduce the height of system for the enhancement of horizontal stiffness. Frequency response comparison between experimental results and mathematical model extracted from dynamics of the stage was performed to identify the system parameters such as spring constants and damping coefficients of actuation modules, which cannot be calculated accurately by analytic methods owing to their complicated structures. This newly developed precision stage and its identified model will be very useful for precision positioning and control because of its high accuracy and non-coupled movement.

Development of confocal scanning microscopy using acousto-optica1 deflector

  • J.W. Seo;D.K. Kang;H.G. Yun;Kim, K.H.;D.G. Gweon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.6-161
    • /
    • 2001
  • Confocal scanning microscopy (CSM) has an important role as the three-dimensional profiler. An image distribution can be reconstructed by a correlation analysis of spots with the bandwidth of radio frequency. But it is a serious problem for the high performance to align the optical components. Especially, the parasitic motion of focus on the detector gives rise to the fatal distortion of an image profile named the extinction effect while using acousto-optical(AO) deflector. An image profile can be regenerated in CSM with many advantages of non-contact, high speed and high resolution comparatively. In addition to the axial response of the primary focus, the lateral movement of it gives a necessity of the unitary lens to the scanning system. While using the beam deflector, the pupil of beam may be fixed at the nominal position. Furthermore, the use of a deflector may result in ...

  • PDF

Development of a Metrological Atomic Force Microscope for the Length Measurements of Nanometer Range (나노미터 영역 길이 측정 위한 미터 소급성을 갖는 원자간력 현미경 개발)

  • 김종안;김재완;박병천;엄태봉;홍재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.75-82
    • /
    • 2004
  • A metrological atomic force microscope (M-AFM) was developed fur the length measurements of nanometer range, through the modification of a commercial AFM. To eliminate nonlinearity and crosstalk of the PZT tube scanner of the commercial AFM, a two-axis flexure hinge scanner employing built-in capacitive sensors is used for X-Y motion instead of PZT tube scanner. Then two-dimensional displacement of the scanner is measured using two-axis heterodyne laser interferometer to ensure the meter-traceability. Through the measurements of several specimens, we could verify the elimination of nonlinearity and crosstalk. The uncertainty of length measurements was estimated according to the Guide to the Expression of Uncertainty in Measurement. Among several sources of uncertainty, the primary one is the drift of laser interferometer output, which occurs mainly from the variation of refractive index of air and the thermal stability. The Abbe error, which is proportional to the measured length, is another primary uncertainty source coming from the parasitic motion of the scanner. The expanded uncertainty (k =2) of length measurements using the M-AFM is √(4.26)$^2$+(2.84${\times}$10$^{-4}$ ${\times}$L)$^2$(nm), where f is the measured length in nm. We also measured the pitch of one-dimensional grating and compared the results with those obtained by optical diffractometry. The relative difference between these results is less than 0.01 %.

Characteristic Analysis of Rotor Losses in High-Speed Permanent Magnet Synchronous Motor (초고속 영구자석형 동기 전동기의 회전자 손실 특성해석)

  • 장석명;조한욱;이성호;양현섭
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • High-speed permanent magnet machines are likely to be a key technology for electric drives and motion control systems for many applications, since they are conductive to high efficiency, high power density, small size and low weight. In high-speed machines, the permanent magnets are often contained within a retaining sleeve. However, the sleeve and the magnets are exposed to high order flux harmonics, which cause parasitic eddy current losses. Rotor losses of high-speed machines are of great importance especially in high-speed applications, because losses heat the rotor, which is often very compact construction and thereby difficult to cool. This causes a danger of demagnetization of the NdFeB permanent magnets. Therefore, special attention should be paid to the prediction of the rotor losses. This paper is concerned with the rotor losses in permanent magnet high-speed machines that are caused by permeance variation due to stator slotting. First, the flux harmonics are determined by double Fourier analysis of the normal flux density data over the rotor surface. And then, the rectilinear model was used to calculate rotor losses in permanent magnet machines. Finally, Poynting vector have been used to investigate the rotor eddy current losses of high-speed Permanent magnet machine.

Manufacturing Test-bench for Developing Nanopositioner (나노포지셔너 개발을 위한 테스트벤치 제작)

  • Kwon, Ji Yong;Park, Geun Je;Ryu, Won Jin;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.593-599
    • /
    • 2013
  • In this study, a test-bench for developing and verifying a 1- or 2-axis nanopositioner was manufactured. Using this test-bench, adesigned and manufactured flexure stage based on an analysis can configure nanopositioning systems. A breadboard and fixture were fabricated to be equipped with various types of mechanisms and sizes of stages. The test-bench has linear encoders for calibrating sensors and verifying the orthogonality and parasitic motion of 2-axis nested-type nanopositioners. The controller was developed using LabVIEW and a TI microcontroller. A case study that exemplified the test bench for developing a nanopositioner by senior undergraduate students is shown.

Wideband Colpitts Voltage Controlled Oscillator with Nanosecond Startup Time and 28 % Tuning Bandwidth for Bubble-Type Motion Detector (나노초의 발진 기동 시간과 28 %의 튜닝 대역폭을 가지는 버블형 동작감지기용 광대역 콜피츠 전압제어발진기)

  • Shin, Im-Hyu;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1104-1112
    • /
    • 2013
  • This paper presents a wideband Colpitts voltage controlled oscillator(VCO) with nanosecond startup time and a center frequency of 8.35 GHz for a new bubble-type motion detector that has a bubble-layer detection zone at the specific distance from itself. The VCO circuit consists of two parts; one is a negative resistance part with a HEMT device and Colpitts feedback structure and the other is a resonator part with a varactor diode and shorted shunt microstrip line. The shorted shunt microstrip line and series capacitor are utilized to compensate for the input reactance of the packaged HEMT that changes from capacitive values to inductive values at 8.1 GHz due to parasitic package inductance. By tuning the feedback capacitors which determine negative resistance values, this paper also investigates startup time improvement with the negative resistance variation and tuning bandwidth improvement with the reactance slope variation of the negative resistance part. The VCO measurement shows the tuning bandwidth of 2.3 GHz(28 %), the output power of 4.1~7.5 dBm and the startup time of less than 2 nsec.

An Investigation of Higher Order Forces on a Vertical Truncated Cylinder

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.214-214
    • /
    • 2003
  • During a model test of Hutton TLP, a "ringing" response was first observed about 20 years ago. This phenomenon is a resonant build up over the time of wave period and this burst-like motion can cause the extreme load on the TLP tether. It is often detected in the large and steep irregular waves but the generation mechanism leading to the "ringing" is not yet well understood. According to the research since then, the higher order harmonic components may account for the "ringing" on the floating offshore structures. The main purpose of the present research is, thus, to measure the higher harmonic forces exerted on a vertical truncated circular column and to compare them with available data. A vertical truncated cylinder with a diameter of 3.5inch and a draft of 10.5inch is used as a test structure, which is a scaled model of ISSC TLP column. The cylinder is installed at a distance of 45ft from the wave maker in order to avoid parasitic waves created in the wave flap. Attached to the upper part of the cylinder are two force gages to measure the horizontal (surge) and vertical (heave) forces on the cylinder. The incoming waves are Stokes waves with a slope ranging from 0.06 to 0.24. The forces and waves are measured for 60 seconds with a sampling rate of 50 Hz. Among the recorded data, the first 10 waves are excluded because of transient behavior of the waves and the next The horizontal and vertical forces are analyzed up to 5th order harmonics. The horizontal forces are then compared to the values from the theoretical model called "FNV model". In addition, force transfer functions are also investigated. Major findings in this research are below. 1) The first order forces measured are slightly larger than the theoretical values of "FNV model" 2) The "FNV model" considerably overpredicts the second order forces. 3) The larger the amplitude and more extreme the wave slope, the smaller the predictions are compared to the experimental. 4) The higher harmonic forces are significantly smaller than the first harmonic force for all wave parameters. 5) The normalized forces vs. waves slopes are almost constant in the lower harmonics but vary a lot in the higher harmonics. 6) The trend of forces is more nonlinear in the horizontal forces than in the vertical forces as the wave slope increases. 7) The part of the results above is also observed by other researchers and confirmed again through the present work.

  • PDF