Browse > Article
http://dx.doi.org/10.7735/ksmte.2013.22.3.593

Manufacturing Test-bench for Developing Nanopositioner  

Kwon, Ji Yong (Mechanical System and Design Engineering, Seoul National University of Science and Technology)
Park, Geun Je (Mechanical System and Design Engineering, Seoul National University of Science and Technology)
Ryu, Won Jin (Mechanical System and Design Engineering, Seoul National University of Science and Technology)
Lee, Chibum (Mechanical System and Design Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.22, no.3_1spc, 2013 , pp. 593-599 More about this Journal
Abstract
In this study, a test-bench for developing and verifying a 1- or 2-axis nanopositioner was manufactured. Using this test-bench, adesigned and manufactured flexure stage based on an analysis can configure nanopositioning systems. A breadboard and fixture were fabricated to be equipped with various types of mechanisms and sizes of stages. The test-bench has linear encoders for calibrating sensors and verifying the orthogonality and parasitic motion of 2-axis nested-type nanopositioners. The controller was developed using LabVIEW and a TI microcontroller. A case study that exemplified the test bench for developing a nanopositioner by senior undergraduate students is shown.
Keywords
Nanopositioner; Flexure stage; Test-bench; Piezo-actuator; Capacitance sensor; Linear encoder;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Meldrum, D. R., Pence, W. H., Moody, S. E., Cunningham. D. L., Holl. M., Wiktor. P. J., Saini. M., Moore. M. P., Jang. L. S., Kidd. M., Fisher. C., Cookson. A., 2001, Automated, integrated modules for fluid handling, thermal cycling and purification of DNA samples for high throughput sequencing and analysis, Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., 1211-1219.
2 Fasik, J. C., 1998, An inchworm actuator for the next generation space telescope, Burleigh Instruments, Inc., Fishers, USA.
3 Jeong, Y. H., Chae, K. W., Bae, J. H., 2011, Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism, Journal of the Korean Society for Precision Engineering, 28:7 851-858.   과학기술학회마을
4 Jung, H. S., 2007, A Study on the Ultraprecision Linear Stage for Stylus Profiler, Master Thesis, Ajou Univ. Korea.
5 ANSYS, 2005, ANSYS User's Manual Version, ANSYS Inc.
6 Slocum, A. H., 1992, Precision Machine Design, Society of Manufacturing Engineers, USA.
7 Smith, S. T., Chetwynd, D. G., 1994, Ultra-Precision Mechanism Design, CRC Press, USA.
8 Bushan, B., 2010, Handbook of Micro/Nano Tribology, 2nd Ed.,. CRC Press, USA.
9 Shim, J. Y., 1997, A Precision XYZ-Stage for AFM Scanner Design, Analysis and Control, Master Thesis, KAIST, Korea.
10 Kim, Y. S., 2003, Development of the Ultra Precision XYZ stage using the Piezo Actuator and Elastic Hinge for AFM, Master Thesis, Seoul Nat'l Univ., Korea.
11 Sebastian, A., Pantazi, A., Cherubini, G., Eleftheriou, E., Lantz, M., Pozidis, H., 2005, Nanopositioning for probe storage, Proc. Amer. Control Conf., 4181-4186.
12 Vettiger, P., Staufer, U., Kern, D. P., 1996, Special Issue on Nanotechnology, Microelectron. J. Eng., 32, 1-4.   DOI   ScienceOn
13 Verma, S., Kim, W. J., Shakir, H., 2005, Multi-axis Maglev nanopositioner for precision manufacturing and manipulation application, IEEE Trans. Ind. Appl., 41:5 1159-1167.   DOI   ScienceOn
14 Choi, K. B., Lee, J. J., Lim, H. J., Kim, G. H., 2011, A Piezo-driven Ultra-precision Stage for Alignment Process of a Contact-type Lithography, Journal of the KSMTE., 20:6 756-770.   과학기술학회마을