• Title/Summary/Keyword: Parametric-based system

Search Result 626, Processing Time 0.02 seconds

Parametric analysis of hybrid outrigger system under wind and seismic loads

  • Neethu Elizabeth Johna;Kiran Kamath
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.503-518
    • /
    • 2023
  • In tall constructions, the outriggers are regarded as a structural part capable of effectively resisting lateral loads. This study analyses the efficacy of hybrid outrigger system in high rise RCC building for various structural parameters identified. For variations in α, which is defined as the ratio of the relative flexural stiffness of the core to the axial rigidity of the column, static and dynamic analyses of hybrid outrigger system having a virtual and a conventional outrigger at two distinct levels were conducted in the present study. An investigation on the optimal outrigger position was performed by taking the results from absolute maximum inter storey drift ratio (ISDmax), roof acceleration (accroof), roof displacement (disproof), and base bending moment under both wind and seismic loads on analytical models having 40, 60 and 80 storeys. An ideal performance index parameter was introduced and was utilized to obtain the optimal position of the hybrid outrigger system considering the combined response of ISDmax, accroof, disproof and, criteria required for the structure under wind and seismic loads. According to the behavioural study, increasing the column area and outrigger arm length will maximise the performance of the hybrid outrigger system. The analysis results are summarized in a flowchart which provides the optimal positions obtained for each dependent parameter and based on ideal performance index which can be used to make initial suggestions for installing a hybrid outrigger system.

Estimation of shear resistance offered by EB-FRP U-jackets: An approach based on fuzzy-inference system

  • S Kar;E.V. Prasad;Nikhil P. Zade;Parveen Sihag;K.C. Biswal
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.27-44
    • /
    • 2023
  • The current study targets to apply the adaptive neuro-fuzzy inference system (ANFIS) for the estimation of the shear resistance offered by the externally bonded fiber-reinforced polymer (EB-FRP) U-jackets. A total of 202 groups of data cumulated from previous investigations, were employed for the development and evaluation of the ANFIS model. A relative appraisal between the ANFIS predictions and the results of experiments has shown that the assessments by current ANFIS model are in good concurrence with the latter. In addition, assessment of the accuracy of the ANFIS model was done by relating the ANFIS predictions with the forecasts of eight extensively used design guidelines. Based on the examination of various performance measures, it has been derived that the adequacy of the ANFIS model is better than the available guidelines. A parametric investigation has additionally been done to reconnoiter the influence of individual parameters as well as their combined effects on the shear contribution of EB-FRP. Based on the observations made from the parametric study, it has been witnessed that the ANFIS model has incorporated the effect of different parameters more competently than the considered design guidelines.

Robust Multiloop Controller Design of Uncertain Affine TFM(Transfer Function Matrix) System (불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계)

  • Byun Hwang-Woo;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • This paper provides sufficient conditions for the robustness of Affine linear TFM(Transfer Function Matrix) MIMO (Multi-Input Multi-Output) uncertain systems based on Rosenbrock's DNA (Direct Nyquist Array). The parametric uncertainty is modeled through a Affine TFM MIMO description, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. For this type of parametric robust performance we show robustness of the Affine TFM systems using Nyquist diagram and GB, DNA(Direct Nyquist Array). Multiloop PI/PB controllers can be tuned by using a modified version of the Ziegler-Nickels (ZN) relations. Simulation examples show the performance and efficiency of the proposed multiloop design method.

The Structural Design of "China Zun" Tower, Beijing

  • Liu, Peng;Cheng, Yu;Zhu, Yan-Song
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • The "China Zun" tower in Beijing will rise to 528 meters in height and will be the tallest building in Beijing once built. Inspired by an ancient Chinese vessel, the "Zun", the plan dimensions reduce gradually from the bottom of the tower to the waist and then expand again as it rises to form an aesthetically beautiful and unique geometry. To satisfy the structural requirement for seismic and wind resistance, the structure is a dual system composed of a perimeter mega structure made of composite mega columns, mega braces, and belt trusses, and a reinforced-concrete core with steel plate-embedded walls. Advanced parametric design technology is applied to find the most efficient outer-perimeter structure system. The seismic design basically follows a mixed empirical and performance-based methodology that was verified by a shaking table test and other specimen lab tests. The tower is now half-way through its construction.

Robust Controller Design of Nuclear Power Reactor by Parametric Method

  • Yoon-Joon Lee;Man-Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.436-444
    • /
    • 2002
  • The robust controller for the nuclear reactor power control system is designed. Since the reactor model is not exact, it is necessary to design the robust controller that can work in the real situations of perturbations. The reactor model is described in the form of transfer function and the bound of each coefficient is determined to set up the linear interval system. By the Kharitonov and the edge theorem, a frequency based design template is made and applied to the determination of the controller. The controller designed by this method is simpler than that obtained by the H$_{\infty}$. Although the controller is designed with the basis of high power, it could be used even at low power.n at low power.

Robust Stabilization of Nonminimum Phase Nonlinear Systems with Parametric Uncertainty (파라미터 불확실성을 갖는 비최소위상 비선형 시스템의 강인 안정화 제어)

  • Joo, Jin-Man;Choi, Yoon-Ho;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.418-421
    • /
    • 1997
  • A control synthesis scheme is presented for nonlinear single-input-single-output (SISO) systems with parametric uncertainty which have completely unstable zero dynamics. The approach involves the derivation of an input-output linearizing control law which achieves internal stability for a nonlinear minimum phase approximation to the original system using Fliess normal form. A vector of unknown constant parameters is also considered. A Lyapunov-based additional control law is shown to stabilize the full system.

  • PDF

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method. (부분구조법에 의한 지반-구조물 상호작용 시스템의 지진응답 매재변수 해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.117-125
    • /
    • 1997
  • ABSTRACT This paper presents results of parametric studies of the seismic responses of a reactor containment structure on layered base soil. Among the numerous parameters, this study concentrates on the effects of embedment of structure to the base soil, thickness of the soil layers, stiffness of the base soil, and the definition point of the input motion. For the analysis, a substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of the SSI system computed from the ratio of dissipated energy to the strain energy for each mode. From the study results, the sensitives of each parameter on the earthquake responses have been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Controller Design and Stability Analysis of Affine System with Dead-Time (불감시간을 갖는 Affine 시스템의 안정도 해석과 제어기 설계)

  • Yang Hai-Won;Byun Hwang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • The Nyquist robust stability margin is proposed as a measure of robust stability for systems with Affine TFM(Transfer Function Matrix) parametric uncertainty. The parametric uncertainty is modeled through a Affine TFM MIMO (Multi-Input Multi-Output) description with dead-time, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. Multiloop PI/PID controllers can be tuned by using a modified version of the Ziegler-Nichols (ZN) relations. Consequently, this paper provides sufficient conditions for the robustness of Affine TFM MIMO uncertain systems with dead-time based on Rosenbrock's DNA. Simulation examples show the performance and efficiency of the proposed multiloop design method for Affine uncertain systems with dead-time.

A Numerical Analysis for Optimal Design of Road Generator System (도로용 발전장치 최적화 설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • In this study, a modeling method is based on representing a road generation system with several rigid bodies, i.e, pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator. The simulation software is developed to evaluate the performance of a road generation system. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The parametric dimensions are included as capacity, length, and angle of equipment. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, power, out energy etc. Consequently, before manufacturing system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.