• Title/Summary/Keyword: Parametric uncertainty

Search Result 162, Processing Time 0.028 seconds

A methodology for uncertainty quantification and sensitivity analysis for responses subject to Monte Carlo uncertainty with application to fuel plate characteristics in the ATRC

  • Price, Dean;Maile, Andrew;Peterson-Droogh, Joshua;Blight, Derreck
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.790-802
    • /
    • 2022
  • Large-scale reactor simulation often requires the use of Monte Carlo calculation techniques to estimate important reactor parameters. One drawback of these Monte Carlo calculation techniques is they inevitably result in some uncertainty in calculated quantities. The present study includes parametric uncertainty quantification (UQ) and sensitivity analysis (SA) on the Advanced Test Reactor Critical (ATRC) facility housed at Idaho National Laboratory (INL) and addresses some complications due to Monte Carlo uncertainty when performing these analyses. This approach for UQ/SA includes consideration of Monte Carlo code uncertainty in computed sensitivities, consideration of uncertainty from directly measured parameters and a comparison of results obtained from brute-force Monte Carlo UQ versus UQ obtained from a surrogate model. These methodologies are applied to the uncertainty and sensitivity of keff for two sets of uncertain parameters involving fuel plate geometry and fuel plate composition. Results indicate that the less computationally-expensive method for uncertainty quantification involving a linear surrogate model provides accurate estimations for keff uncertainty and the Monte Carlo uncertainty in calculated keff values can have a large effect on computed linear model parameters for parameters with low influence on keff.

Design of Adaptive Observer for Power System with Structured Uncertainty (구조화된 불확실성을 갖는 전력 계통의 적응 관측기 설계)

  • Hwang, Jung-Rok;Kim, Do-Woo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1211-1214
    • /
    • 1999
  • Power system operating conditions vary with system configuration and loading conditions. Coefficients in nominal system model change in a complex manner with different operating point and so does system dynamic behavior. With the aid of unstructured and structured uncertainty descriptions the worst system variations can be estimated and formulated into two different uncertainty models multiplicative unstructured uncertainty in the form of transfer function and structured uncertainty with the parametric uncertainty description. in frequency domain

  • PDF

A polynomial chaos method to the analysis of the dynamic behavior of spur gear system

  • Guerine, A.;El Hami, A.;Fakhfakh, T.;Haddar, M.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.819-831
    • /
    • 2015
  • In this paper, we propose a new method for taking into account uncertainties based on the projection on polynomial chaos. The new approach is used to determine the dynamic response of a spur gear system with uncertainty associated to gear system parameters and this uncertainty must be considered in the analysis of the dynamic behavior of this system. The simulation results are obtained by the polynomial chaos approach for dynamic analysis under uncertainty. The proposed method is an efficient probabilistic tool for uncertainty propagation. It was found to be an interesting alternative to the parametric studies. The polynomial chaos results are compared with Monte Carlo simulations.

Robust Stabilization of Nonminimum Phase Nonlinear Systems with Parametric Uncertainty (파라미터 불확실성을 갖는 비최소위상 비선형 시스템의 강인 안정화 제어)

  • Joo, Jin-Man;Choi, Yoon-Ho;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.418-421
    • /
    • 1997
  • A control synthesis scheme is presented for nonlinear single-input-single-output (SISO) systems with parametric uncertainty which have completely unstable zero dynamics. The approach involves the derivation of an input-output linearizing control law which achieves internal stability for a nonlinear minimum phase approximation to the original system using Fliess normal form. A vector of unknown constant parameters is also considered. A Lyapunov-based additional control law is shown to stabilize the full system.

  • PDF

Nonlinear finite element based parametric and stochastic analysis of prestressed concrete haunched beams

  • Ozogul, Ismail;Gulsan, Mehmet E.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.207-224
    • /
    • 2022
  • The mechanical behavior of prestressed concrete haunched beams (PSHBs) was investigated in depth using a finite element modeling technique in this study. The efficiency of finite element modeling was investigated in the first stage by taking into account a previous study from the literature. The first stage's findings suggested that finite element modeling might be preferable for modeling PSHBs. In the second stage of the research, a comprehensive parametric study was carried out to determine the effect of each parameter on PSHB load capacity, including haunch angle, prestress level, compressive strength, tensile reinforcement ratio, and shear span to depth ratio. PSHBs and prestressed concrete rectangular beams (PSRBs) were also compared in terms of capacity. Stochastic analysis was used in the third stage to define the uncertainty in PSHB capacity by taking into account uncertainty in geometric and material parameters. Standard deviation, coefficient of variation, and the most appropriate probability density function (PDF) were proposed as a result of the analysis to define the randomness of capacity of PSHBs. In the study's final section, a new equation was proposed for using symbolic regression to predict the load capacity of PSHBs and PSRBs. The equation's statistical results show that it can be used to calculate the capacity of PSHBs and PSRBs.

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Robust compensator design for parametric uncertain systems by separated optimizations (분리최적화 기법을 이용한 강인제어기 설계)

  • 김경수;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.589-592
    • /
    • 1996
  • It is well known that robust compensators designed by the block-diagonal Lyapunov function approaches are conservative while they are popular in practice because of their computational easiness. In this note, we develop a systematized version of conventional block-diagonal Lyapunov function approaches by deriving two separated optimizations based on the guaranteed cost control method. The proposed method generates reasonable robust compensators in practice.

  • PDF

Adaptive Control of a Nonholonomic Mobile Robot with Parametric Uncertainty (불확실한 파라미터를 갖는 비홀로노믹 이동로봇의 적응제어)

  • Baik, Jong-Ik;Yun, Tae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.15-18
    • /
    • 2003
  • This paper presents an adaptive control scheme for parking or regulating a nonholonomic mobile robot of an unicycle type with parameter uncertainty. The kinematics can be described with Brockett's nonholonomic integrator. The control law is designed in cylindrical coordinates together with the estimation law for the uncertain parameters such that the controlled signals converge to zero while guaranteeing the boundedness of the estimation errors. The effectiveness of the proposed scheme is demonstrated using simulations.

  • PDF

Adaptive Control based on a ParametricAffine Model for tail-control led Missiles (매개변수화 어파인 모델에 기반한 꼬리날개 제어유도탄의 적응제어)

  • 최진영;좌동경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.2-2
    • /
    • 2000
  • This paper presents an adaptive control against uncertainties in tail-controlled STT (skid-to-Turn) missiles. First, we derive an analytic uncertainty model from a parametricaffine missile model developed by the authors. Based on this analytic model, an adaptive feedbacklinearizing control law accompanied by a sliding model control law is proposed. We provide analyses of stability and output tracking performance of the overall adaptive missile system. The performance and validity of the proposed adaptive control scheme is demonstrated by simulation.

  • PDF