• Title/Summary/Keyword: Parametric Operation

Search Result 161, Processing Time 0.024 seconds

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

A Study on Cooling of the CNS Moderator in HANARO (하나로 냉중성자원 감속재의 냉강에 대한 연구)

  • 박국남;박종학;조만순;최창웅;유성연
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.177-181
    • /
    • 1999
  • Cold Neutron Source(CNS) facility comprises moderator circulation system, helium cooling system, neutron guide and auxiliary sistems. To increase the amount of cold neutron, the thermal neutron should pass cold moderator at cryogenic temperature. As cold moderator in Hanaro, the liquid hydrogen or liquid deuterium will be used and the temperature in operation will be used and the temperature in operation will be maintained to be $250^{\circ}C$ below zero. To maintain the moderator at this cryogenic temperature. He refrigerator is used to cool it down in thermosiphon having natural circulation. As a part of the conceptual design of Hanaro CNS, study on the characteristics of moderators, design of moderator chanmber and cooling method were done through the collaboration of Korea Atomic Energy Research Institute and Petersburg Nuclear Physics Institute. During the collaboration, a program for the design of moderator cooling system design concept through the parametric study using this program. In the parametric study, the effect of the moderator type on the design parameters was investigated. Also, the requirements on the performance test for the cooling system, which will be made before the basic design, were investigated.

  • PDF

Experimental Study on the Characteristics of Heat Exchanger of 1 kW PEMFC System for UAV (무인항공기용 고분자전해질형 연료전지 시스템의 열교환기 성능 특성 연구)

  • Kang, Sang-Gyu;Kim, Byung-Jun;Kim, Han-Seok
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.819-826
    • /
    • 2011
  • The proton exchange membrane fuel cell (PEMFC) is regarded as the most promising alternative power sources for unmanned aerial vehicle (UAV) due to its high energy density and silent operation. Since there are many load changes during UAV flight, thermal management is one of the important factor for the performance of PEMFC. In order to reduce the UAV weight for the stable operation of UAV, thermal management system (TMS) studied in this work does not use the fan but use the air flowing into UAV by UAV flight. In order to develop the passive type heat exchanger (HEX) for 1kW PEMFC, four types of HEXs are fabricated and their cooling performances are compared. The parametric study on the cooling performance of HEXs has performed with the variation of operating parameters such as mass flow rates and inlet temperature of air and coolant. Type 4 has the best performance in every case. This study can be helpful to achieve the optimal design of HEX for PEMFC powered UAV.

Design of Robust Resonance Suppression Controller in Parameter Variation for Speed Control of Parallel Connected Dual SPMSMs Fed by a Single Inverter

  • Yun, Chul;Jang, Tae-Sung;Cho, Nae-Soo;Yoon, Byung-Keun;Kwon, Woo-Hyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1908-1916
    • /
    • 2018
  • This paper proposes a controller design method for suppressing the resonance generated in the slave motor in the middle and low speed operation range, according to the load and parameter differences between two motors, during parallel operation using the master and slave method that controls two surface permanent magnet synchronous motors connected in parallel by a single inverter. The proposed resonance suppression controller is directly obtained by analyzing the resonance characteristics, using the lead controller method. Therefore, it is possible to fundamentally reduce trial and error to set the controller gain. In addition, because the proposed resonance suppression controller was designed as a lead controller, the stability region of the system increased owing to the added zero point, making the system robust with respect to parametric variations. Simulations and experiments confirmed the usefulness of the proposed method and the system's robustness with respect to parametric variations.

Band Fault Modelling Based on specification for the Time Domain Test of RFIC (RF 집적회로의 시간영역 테스팅을 위한 사양기반 구간고장모델링)

  • Kim, Kang-Chul;Han, Seok-Bung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.299-308
    • /
    • 2008
  • This paper proposes a new design specification-based band fault modelling technique that can test design specification in a time domain. The band fault model is defined and the conditions of band fault model are gained as normal operation regions are defined. And the conditions of band fault model are used in a 5.25GHz low noise amplifier, then 9 band fault models that can detect hard and parametric faults of active and passive devices are obtained.

3D Tunnel Modeling by Parametric Representation of Geometry (매개변수식 기하 표현법에 의한 3차원 터널 모델링)

  • 이형우;신대석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A method of automatic 3D tunnel modeling is proposed. The proposed method used the parametric representation of geometry and a hierarchical and relational data structure. These two bases provide the generalization and extension for 3D tunnel modeling. Especially, these two fundamentals ion the basis iota representing the characteristics of the tunnel structure for analysis. The constant-curvature characteristic is exploited to generate 3D mesh on the tunnel surface. This is attributed to the advantage that any 2D automatic mesh generation algorithm can be applied to 3D mesh modeling.

Development of An On-line Scheduling Framework Based on Control Principles and its Computation Methodology Using Parametric Programming (실시간 일정계획 문제에 대한 Control 기반의 매개변수 프로그래밍을 이용한 해법의 개발)

  • Ryu, Jun-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1215-1219
    • /
    • 2006
  • Scheduling plays an important role in the process management in terms of providing profit-maximizing operation sequence of multiple orders and estimating completion times of them. In order to takes its full potential, varying conditions should be properly reflected in computing the schedule. The adjustment of scheduling decisions has to be made frequently in response to the occurrence of variations. It is often challenging because their model has to be adjusted and their solutions have to be computed within short time period. This paper employs Model Predictive Control(MPC) principles for updating the process condition in the scheduling model. The solutions of the resulting problems considering variations are computed using parametric programming techniques. The key advantage of the proposed framework is that repetition of solving similar programming problems with decreasing dimensionis avoided and all potential schedules are obtained before the execution of the actual processes. Therefore, the proposed framework contributes to constructing a robust decision-support tool in the face of varying environment. An example is solved to illustrate the potential of the proposed framework with remarks on potential wide applications.

Development of a Mid-infrared CW Optical Parametric Oscillator Based on Fan-out Grating MgO:PPLN Pumped at 1064 nm

  • Bae, In-Ho;Lim, Sun Do;Yoo, Jae-Keun;Lee, Dong-Hoon;Kim, Seung Kwan
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • We report development of a frequency-stabilized mid-infrared continuous-wave (cw) optical parametric oscillator (OPO) based on a fan-out grating MgO:PPLN crystal pumped at 1064 nm. The OPO resonator was designed as a pump-enhanced standing-wave cavity that resonates to the pump and signal beams. To realize stable operation of the OPO, we applied a modified Pound-Drever-Hall technique, which is a well-known method for powerful laser frequency stabilization. Tuning a poling period of the fan-out grating of the crystal allows wavelength-tunable OPO outputs from 1510 nm to 1852 nm and from 2500 nm to 3600 nm for signal and idler beams, respectively. At the idler wavelengths of 2500 nm, 3000 nm and 3500 nm, we achieved more than 50 mW of output powers at a pumping power of 1.1 W. The long-term stability of the OPO was confirmed by recording the power and wavelength variations of the idler for an hour.

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.