• Title/Summary/Keyword: Parametric Operation

Search Result 160, Processing Time 0.022 seconds

A Study on the Effects of Exitation Voltage Waveforms on the Performances of Parametric Transformer (여자전압의 파형에 따른 Parametric Transformer의 특성)

  • Woo, Jung-In;Jung, Kee-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.706-709
    • /
    • 1992
  • This paper deals with the operation of a parametric transformer through the normalization of system equations. Based on these equations, the effects of excitation voltage waveforms on the performances of the parametric transformer are analyzed.

  • PDF

PARAMETRIC OPERATIONS FOR TWO FUZZY NUMBERS

  • Byun, Jisoo;Yun, Yong Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.635-642
    • /
    • 2013
  • There are many results on the extended operations of two fuzzy numbers based on the Zadeh's extension principle. For the calculation, we have to use existing operations between two ${\alpha}$-cuts. In this paper, we define parametric operations between two ${\alpha}$-cuts which are different from the existing operations. But we have the same results as the extended operations of Zadeh's principle.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

Resonant Parametric Perturbation Method to Control Chaos in Current Mode Controlled DC-DC Buck-Boost Converter

  • Kavitha, Anbukumar;Uma, Govindarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.171-178
    • /
    • 2010
  • Resonant parametric perturbation (RPP) method is an effective non-feedback method for controlling chaos. In this paper, the above method is applied for the current programmed buck-boost dc-dc converter which exhibits chaotic for wide parameter variations. The different possible operating regimes leading to chaotic operation of the current mode controlled buck-boost converter is discussed and the control of chaos by RPP method is demonstrated through computer simulations and experimental studies. The converter is stabilized to period 1 operation practically.

Operation of ULCS - real life

  • Prpic-Orsic, Jasna;Parunov, Josko;Sikic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1014-1023
    • /
    • 2014
  • In this paper the real life operation of ULCS (Ultra Large Container Ships) is presented from the point of view of shipmasters. The paper provides interpretation of results of questionnaire filled by masters of large container ships during Tools for Ultra Large Container Ships (TULC) EUI FP7 project. This is done in a way that results of questionnaire are further reviewed and commented by experienced master of ULCS. Following phenomena are subject of questionnaire and further discussed in the paper: parametric rolling, slamming, whipping, springing, green water and rogue waves. Special attention is given to the definition of rough sea states as well as to measures that ship masters take to avoid them as well as to the manoeuvring in heavy seas. The role of the wave forecast and weather routing software is also discussed.

Multi-objective parametric optimization of FPSO hull dimensions

  • Lee, Jonghun;Ruy, Won-Sun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.734-745
    • /
    • 2021
  • In order to achieve a good and competitive FPSO design, the building cost and the motion performances are the two most critical and conflicting KPIs to be considered. In this study, the author's previous work (Lee, et al., 2021) on the optimization of an FPSO's hull dimensions with 1800 MBBLs storage capacity at Brazil field was extended using a multi-objective parametric optimization with the hull steel weight and the operability which are closely related to the building cost and the operational cost during the lifetime, respectively. For the purpose of more realistic and practical FPSO design, the constraints related to crew comfort and the safe helicopter take-off and landing operation were newly added. Also, the green water on deck was calculated accurately to check the suitability of the designed freeboard height using a newly developed real-time calculation module for the relative wave elevations. With aids of this updated optimization formulation, we presented multiple optimal FPSO dimensions expressed as a Pareto set which aids FPSO designers to conveniently select the practical and competitive dimensions. The excellence of the developed approach was verified by comparing the optimization results with those of FPSOs dimensioned for operation at West Africa and Brazil field.

Polygon Modeling with Constraint Management (구속조건 관리를 이용한 다각형 모델링)

  • 김기현;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.145-153
    • /
    • 1998
  • An approach has been developed to generate parametric models with Boolean operations. The approach combines Boolean operations and graph manipulation on the constraints imposed on primitives. A Boolean operation is first performed on two primitives and new geometric elements such as vertices and edges are computed. Then to generate the constraint graph of the polygon the each constraints graph of two primitives are merged by adding the new geometric elements with its corresponding constraints. In the merging process, some of the geometric elements belonging to the primitives may be eliminated based on its contribution to the polygon. A computer implementation in a 2D space is described to illustrate the approach with examples.

  • PDF

Parametric Design of Complex Hull Forms

  • Kim Hyun-Cheol;Nowacki Horst
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.47-63
    • /
    • 2005
  • In the present study, we suggest a new method for designing complex ship hull forms with multiple domain B-spline surfaces accounting for their topological arrangement, where all subdomains are fully defined in terms of form parameters, e.g., positional, differential and integral descriptors. For the construction of complex hull forms, free-form elementary models such as forebody, afterbody and bulbs are united by Boolean operation and blending surfaces in compliance with the sectional area curve (SAC) of the whole ship. This new design process in this paper is called Sectional Area Curve-Balanced Parametric Design (SAC-BPD).

AN ALGEBRAIC OPERATIONS FOR TWO GENERALIZED 2-DIMENSIONAL QUADRATIC FUZZY SETS

  • Yun, Yong Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.379-386
    • /
    • 2018
  • We generalized the quadratic fuzzy numbers on ${\mathbb{R}}$ to ${\mathbb{R}}_2$. By defining parametric operations between two regions valued ${\alpha}-cuts$, we got the parametric operations for two triangular fuzzy numbers defined on ${\mathbb{R}}_2$. The results for the parametric operations are the generalization of Zadeh's extended algebraic operations. We generalize the 2-dimensional quadratic fuzzy numbers on ${\mathbb{R}}_2$ that may have maximum value h < 1. We calculate the algebraic operations for two generalized 2-dimensional quadratic fuzzy sets.

Zadeh's extension principle for 2-dimensional triangular fuzzy numbers (2-차원 삼각퍼지수에 대한 Zadeh의 확장원리)

  • Kim, Changil;Yun, Yong Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.197-202
    • /
    • 2015
  • A triangular fuzzy number is one of the most popular fuzzy numbers. Many results for the extended algebraic operations between two triangular fuzzy numbers are well-known. We generalize the triangular fuzzy numbers on $\mathbb{R}$ to $\mathbb{R}^2$. By defining parametric operations between two regions valued ${\alpha}$-cuts, we get the parametric operations for two triangular fuzzy numbers defined on $\mathbb{R}^2$.