AN ALGEBRAIC OPERATIONS FOR TWO GENERALIZED 2-DIMENSIONAL QUADRATIC FUZZY SETS

Yong Sik Yun*

Abstract

We generalized the quadratic fuzzy numbers on \mathbb{R} to \mathbb{R}^{2}. By defining parametric operations between two regions valued α-cuts, we got the parametric operations for two triangular fuzzy numbers defined on \mathbb{R}^{2}. The results for the parametric operations are the generalization of Zadeh's extended algebraic operations. We generalize the 2-dimensional quadratic fuzzy numbers on \mathbb{R}^{2} that may have maximum value $h<1$. We calculate the algebraic operations for two generalized 2-dimensional quadratic fuzzy sets.

1. Introduction

We calculated the algebraic operator for two generalized trapezoidal fuzzy sets ([6]) and for two one-sided quadrangular fuzzy sets ([7]). We generalized the triangular fuzzy numbers on \mathbb{R} to \mathbb{R}^{2} and calculated the algebraic operator for two 2-dimensional triangular fuzzy numbers ([4]). We proved that the results for the parametric operations are the generalization of Zadeh's max-min composition operations ([2]).

We generalized the quadratic fuzzy numbers on \mathbb{R} to $\mathbb{R}^{2}([3])$. By defining parametric operations between two regions valued α-cuts, we got the parametric operations for two triangular fuzzy numbers defined on \mathbb{R}^{2}. The results for the parametric operations are the generalization of Zadeh's extended algebraic operations ([5]). We generalize the 2dimensional quadratic fuzzy numbers on \mathbb{R}^{2} that may have maximum value $h<1$. We calculate the algebraic operations for two generalized 2-dimensional quadratic fuzzy sets.

Received June 27, 2018; Accepted September 10, 2018.
Key words and phrases: algebraic operation, 2-dimensional quadratic fuzzy set. 2010 Mathematics Subject Classification: Primary 47N99.
This research was supported by the 2018 scientific promotion program funded by Jeju National University.

2. Preliminaries

We define α-cut and α-set of the fuzzy set A on \mathbb{R} with the membership function $\mu_{A}(x)$.

Definition 2.1. An α-cut of the fuzzy number A is defined by $A_{\alpha}=$ $\left\{x \in \mathbb{R} \mid \mu_{A}(x) \geq \alpha\right\}$ if $\alpha \in(0,1]$ and $A_{0}=\operatorname{cl}\left\{x \in \mathbb{R} \mid \mu_{A}(x)>\alpha\right\}$. For $\alpha \in(0,1)$, the set $A^{\alpha}=\left\{x \in X \mid \mu_{A}(x)=\alpha\right\}$ is said to be the α-set of the fuzzy set A, A^{0} is the boundary of $\left\{x \in \mathbb{R} \mid \mu_{A}(x)>\alpha\right\}$ and $A^{1}=A_{1}$.

Following Zadeh, Dubois and Prade, the extension principle is defined as follows:

Definition 2.2. [8] The extended addition $A(+) B$, extended subtraction $A(-) B$, extended multiplication $A(\cdot) B$ and extended division $A(/) B$ are fuzzy sets with membership functions as follows. For all $x \in A$ and $y \in B$,

$$
\mu_{A(*) B}(z)=\sup _{z=x * y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}, *=+,-, \cdot, /
$$

We defined the parametric operations for two fuzzy numbers defined on \mathbb{R} and showed that the results for parametric operations are the same as those for the extended operations ([1]). For this, we proved that for all fuzzy numbers A and all $\alpha \in[0,1]$, there exists a piecewise continuous function $f_{\alpha}(t)$ defined on $[0,1]$ such that $A_{\alpha}=\left\{f_{\alpha}(t) \mid t \in[0,1]\right\}$. If A is continuous, then the corresponding function $f_{\alpha}(t)$ is also continuous. The corresponding function $f_{\alpha}(t)$ is said to be the parametric α-function of A. The parametric α-function of A is denoted by $f_{\alpha}(t)$ or $f_{A}(t)$.

Definition 2.3. Let A and B be two continuous fuzzy numbers defined on \mathbb{R} and $f_{A}(t), f_{B}(t)$ be the parametric α-functions of A and B , respectively. The parametric addition, parametric subtraction, parametric multiplication and parametric division are fuzzy numbers that have their α-cuts as follows.
(1) parametric addition $A(+)_{p} B$:

$$
\left(A(+)_{p} B\right)_{\alpha}=\left\{f_{A}(t)+f_{B}(t) \mid t \in[0,1]\right\}
$$

(2) parametric subtraction $A(-)_{p} B$:

$$
\left(A(-)_{p} B\right)_{\alpha}=\left\{f_{A}(t)-f_{B}(1-t) \mid t \in[0,1]\right\}
$$

(3) parametric multiplication $A(\cdot)_{p} B$:

$$
\left(A(\cdot)_{p} B\right)_{\alpha}=\left\{f_{A}(t) \cdot f_{B}(t) \mid t \in[0,1]\right\} .
$$

(4) parametric division $A(/)_{p} B$:

$$
\left(A(/)_{p} B\right)_{\alpha}=\left\{f_{A}(t) / f_{B}(1-t) \mid t \in[0,1]\right\} .
$$

Theorem 2.4. [1] Let A and B be two continuous fuzzy numbers defined on \mathbb{R}. Then we have $A(+)_{p} B=A(+) B, A(-)_{p} B=A(-) B, A(\cdot)_{p} B$ $=A(\cdot) B$ and $A(/)_{p} B=A(/) B$.

3. A generalized 2-dimensional quadratic fuzzy sets

In this section, we define the generalized 2 -dimensional quadratic fuzzy sets on \mathbb{R}^{2}. We defined the parametric operations between two 2-dimensional quadratic fuzzy numbers using the operations between α sets in \mathbb{R}^{2}. In \mathbb{R}^{2} the α-sets are regions, which makes the existing method of calculations between α-sets. We interpret the existing method from a different perspective and apply the method to the region valued α-sets on \mathbb{R}^{2}.

Definition 3.1. A fuzzy set A with a membership function $\mu_{A}(x, y)$

$$
= \begin{cases}h-\left(\frac{\left(x-x_{1}\right)^{2}}{a^{2}}+\frac{\left(y-y_{1}\right)^{2}}{b^{2}}\right), & b^{2}\left(x-x_{1}\right)^{2}+a^{2}\left(y-y_{1}\right)^{2} \leq h a^{2} b^{2}, \\ 0, & \text { otherwise },\end{cases}
$$

where $a, b>0$ and $0<h<1$ is called the the generalized 2-dimensional quadratic fuzzy set and denoted by $\left[\left[a, x_{1}, h, b, y_{1}\right]\right]^{2}$.

Note that $\mu_{A}(x, y)$ is a cone. The intersections of $\mu_{A}(x, y)$ and the horizontal planes $z=\alpha \quad(0<\alpha<1)$ are ellipses. The intersections of $\mu_{A}(x, y)$ and the vertical planes $y-y_{1}=k\left(x-x_{1}\right) \quad(k \in \mathbb{R})$ are symmetric quadratic fuzzy sets in those planes. If $a=b$, ellipses become circles. The α-cut A_{α} of a generalized 2-dimensional quadratic fuzzy set $A=\left[\left[a, x_{1}, h, b, y_{1}\right]\right]^{2}$ is an interior of ellipse in an $x y$-plane including the boundary

$$
\begin{aligned}
A_{\alpha} & =\left\{(x, y) \in \mathbb{R}^{2} \mid b^{2}\left(x-x_{1}\right)^{2}+a^{2}\left(y-y_{1}\right)^{2} \leq a^{2} b^{2}(h-\alpha)\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{\left(x-x_{1}\right)^{2}}{a^{2}(h-\alpha)}+\frac{\left(y-y_{1}\right)^{2}}{b^{2}(h-\alpha)} \leq 1\right.\right\} .
\end{aligned}
$$

Theorem 3.2. [1] Let A be a continuous convex fuzzy number defined on \mathbb{R}^{2} and $A^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\}$ be the α-set of A. Then for all $\alpha \in(0,1)$, there exist continuous functions $f_{1}^{\alpha}(t)$ and $f_{2}^{\alpha}(t)$ defined on $[0,2 \pi]$ such that

$$
A^{\alpha}=\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\} .
$$

Definition 3.3. Let A and B be convex fuzzy numbers defined on \mathbb{R}^{2} and

$$
\begin{aligned}
& A^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\}=\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}, \\
& B^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{B}(x, y)=\alpha\right\}=\left\{\left(g_{1}^{\alpha}(t), g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
\end{aligned}
$$

be the α-sets of A and B, respectively. For $\alpha \in(0,1)$, we define that the parametric addition $A(+)_{p} B$, parametric subtraction $A(-)_{p} B$, parametric multiplication $A(\cdot)_{p} B$ and parametric division $A(/)_{p} B$ of two fuzzy numbers A and B are fuzzy numbers that have their α-sets as follows.
(1) $A(+)_{p} B$:
$\left(A(+)_{p} B\right)^{\alpha}=\left\{\left(f_{1}^{\alpha}(t)+g_{1}^{\alpha}(t), f_{2}^{\alpha}(t)+g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}$.
(2) $A(-)_{p} B$:
$\left(A(-)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}$, where

$$
x_{\alpha}(t)= \begin{cases}f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t+\pi), & \text { if } 0 \leq t \leq \pi \\ f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t-\pi), & \text { if } \pi \leq t \leq 2 \pi\end{cases}
$$

and

$$
y_{\alpha}(t)= \begin{cases}f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t+\pi), & \text { if } 0 \leq t \leq \pi \\ f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t-\pi), & \text { if } \pi \leq t \leq 2 \pi\end{cases}
$$

(3) $A(\cdot)_{p} B$:
$\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(f_{1}^{\alpha}(t) \cdot g_{1}^{\alpha}(t), f_{2}^{\alpha}(t) \cdot g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}$.
(4) $A(/)_{p} B$:
$\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}$, where

$$
\begin{aligned}
& x_{\alpha}(t)=\frac{f_{1}^{\alpha}(t)}{g_{1}^{\alpha}(t+\pi)} \quad(0 \leq t \leq \pi) \\
& x_{\alpha}(t)=\frac{f_{1}^{\alpha}(t)}{g_{1}^{\alpha}(t-\pi)} \quad(\pi \leq t \leq 2 \pi)
\end{aligned}
$$

and

$$
\begin{aligned}
& y_{\alpha}(t)=\frac{f_{2}^{\alpha}(t)}{g_{2}^{\alpha}(t+\pi)} \quad(0 \leq t \leq \pi) \\
& y_{\alpha}(t)=\frac{f_{2}^{\alpha}(t)}{g_{2}^{\alpha}(t-\pi)} \quad(\pi \leq t \leq 2 \pi)
\end{aligned}
$$

For $\alpha=0$ and $\alpha=1,\left(A(*)_{p} B\right)^{0}=\lim _{\alpha \rightarrow 0^{+}}\left(A(*)_{p} B\right)^{\alpha}$ and $\left(A(*)_{p} B\right)^{1}=\lim _{\alpha \rightarrow 1^{-}}\left(A(*)_{p} B\right)^{\alpha}$, where $*=+,-, \cdot /$.

Theorem 3.4. Let $A=\left[\left[a_{1}, x_{1}, h_{1}, b_{1}, y_{1}\right]\right]^{2}$ and $B=\left[\left[a_{2}, x_{2}, h_{2}\right.\right.$, $\left.\left.b_{2}, y_{2}\right]\right]^{2}\left(0<h_{1}<h_{2}<1\right)$ be two generalized 2-dimensional quadratic fuzzy sets. Since A and B are convex fuzzy sets defined on \mathbb{R}^{2}, by Theorem 3.2, there exists $f_{i}^{\alpha}(t), g_{i}^{\alpha}(t)(i=1,2)$ such that

$$
A^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{A}(x, y)=\alpha\right\}=\left\{\left(f_{1}^{\alpha}(t), f_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
$$

and

$$
B^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid \mu_{B}(x, y)=\alpha\right\}=\left\{\left(g_{1}^{\alpha}(t), g_{2}^{\alpha}(t)\right) \in \mathbb{R}^{2} \mid 0 \leq t \leq 2 \pi\right\}
$$

Since $A=\left[\left[a_{1}, x_{1}, h_{1}, b_{1}, y_{1}\right]\right]^{2}$ and $B=\left[\left[a_{2}, x_{2}, h_{2}, b_{2}, y_{2}\right]\right]^{2}$, we have

$$
f_{1}^{\alpha}(t)=x_{1}+a_{1} \sqrt{h_{1}-\alpha} \cos t, \quad f_{2}^{\alpha}(t)=y_{1}+b_{1} \sqrt{h_{1}-\alpha} \sin t
$$

and

$$
g_{1}^{\alpha}(t)=x_{2}+a_{2} \sqrt{h_{2}-\alpha} \cos t, \quad g_{2}^{\alpha}(t)=y_{2}+b_{2} \sqrt{h_{2}-\alpha} \sin t
$$

We have the followings.
(1) Let $0<\alpha<h_{1}$. Since

$$
f_{1}^{\alpha}(t)+g_{1}^{\alpha}(t)=x_{1}+x_{2}+\left(a_{1} \sqrt{h_{1}-\alpha}+a_{2} \sqrt{h_{2}-\alpha}\right) \cos t
$$

and

$$
f_{2}^{\alpha}(t)+g_{2}^{\alpha}(t)=y_{1}+y_{2}+\left(b_{1} \sqrt{h_{1}-\alpha}+b_{2} \sqrt{h_{2}-\alpha}\right) \sin t
$$

we have

$$
\begin{aligned}
\left(A(+)_{p} B\right)^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid\right. & \left(\frac{x-x_{1}-x_{2}}{a_{1} \sqrt{h_{1}-\alpha}+a_{2} \sqrt{h_{2}-\alpha}}\right)^{2} \\
& \left.+\left(\frac{y-y_{1}-y_{2}}{b_{1} \sqrt{h_{1}-\alpha}+b_{2} \sqrt{h_{2}-\alpha}}\right)^{2}=1\right\}
\end{aligned}
$$

(2) Let $0<\alpha<h_{1}$. If $0 \leq t \leq \pi$,

$$
f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t+\pi)=x_{1}-x_{2}+\left(a_{1} \sqrt{h_{1}-\alpha}+a_{2} \sqrt{h_{2}-\alpha}\right) \cos t
$$

and
$f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t+\pi)=y_{1}-y_{2}+\left(b_{1} \sqrt{h_{1}-\alpha}+b_{2} \sqrt{h_{2}-\alpha}\right) \sin t$.
In the case of $\pi \leq t \leq 2 \pi$, we have

$$
f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t-\pi)=f_{1}^{\alpha}(t)-g_{1}^{\alpha}(t+\pi)
$$

and

$$
f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t-\pi)=f_{2}^{\alpha}(t)-g_{2}^{\alpha}(t+\pi)
$$

Thus

$$
\begin{aligned}
\left(A(-)_{p} B\right)^{\alpha}=\left\{(x, y) \in \mathbb{R}^{2} \mid\right. & \left(\frac{x-x_{1}+x_{2}}{a_{1} \sqrt{h_{1}-\alpha}+a_{2} \sqrt{h_{2}-\alpha}}\right)^{2} \\
& \left.+\left(\frac{y-y_{1}+y_{2}}{b_{1} \sqrt{h_{1}-\alpha}+b_{2} \sqrt{h_{2}-\alpha}}\right)^{2}=1\right\}
\end{aligned}
$$

(3) Let $0<\alpha<h_{1}$ and $\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$.

Since
$f_{1}^{\alpha}(t)=x_{1}+a_{1} \sqrt{h_{1}-\alpha} \cos t, f_{2}^{\alpha}(t)=y_{1}+b_{1} \sqrt{h_{1}-\alpha} \sin t$
and
$g_{1}^{\alpha}(t)=x_{2}+a_{2} \sqrt{h_{2}-\alpha} \cos t, g_{2}^{\alpha}(t)=y_{2}+b_{2} \sqrt{h_{2}-\alpha} \sin t$,
we have

$$
\begin{aligned}
x_{\alpha}(t)= & x_{1} x_{2}+\left(x_{1} a_{2} \sqrt{h_{2}-\alpha}+x_{2} a_{1} \sqrt{h_{1}-\alpha}\right) \cos t \\
& +a_{1} a_{2} \sqrt{h_{1}-\alpha} \sqrt{h_{2}-\alpha} \cos ^{2} t
\end{aligned}
$$

and

$$
\begin{aligned}
y_{\alpha}(t)= & y_{1} y_{2}+\left(y_{1} b_{2} \sqrt{h_{2}-\alpha}+y_{2} b_{1} \sqrt{h_{1}-\alpha}\right) \sin t \\
& +b_{1} b_{2} \sqrt{h_{1}-\alpha} \sqrt{h_{2}-\alpha} \sin ^{2} t .
\end{aligned}
$$

(4) Let $0<\alpha<h_{1}$ and $\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$. Similarly, we have

$$
\begin{gathered}
x_{\alpha}(t)=\frac{x_{1}+a_{1} \sqrt{h_{1}-\alpha} \cos t}{x_{2}-a_{2} \sqrt{h_{2}-\alpha} \cos t} \quad \text { and } \\
y_{\alpha}(t)=\frac{y_{1}+b_{1} \sqrt{h_{1}-\alpha} \sin t}{y_{2}-b_{2} \sqrt{h_{2}-\alpha} \sin t} .
\end{gathered}
$$

If $\alpha=h_{1}$, we have $\left(A(*)_{p} B\right)^{h_{1}}=\lim _{\alpha \rightarrow h_{1}^{-}}\left(A(*)_{p} B\right)^{\alpha}, *=+,-$, \cdot, /, and for $h_{1}<\alpha \leq h_{2}$, by the Zadehs max-min principle operations, we have to define $\left(A(*)_{p} B\right)^{\alpha}=\emptyset, *=+,-, \cdot /$.

Example 3.5. Let $A=\left[\left[6,3, \frac{1}{2}, 8,5\right]\right]^{2}$ and $B=\left[\left[4,2, \frac{2}{3}, 5,3\right]\right]^{2}$. Then by Theorem 3.5, we have the following.
(1) For $0<\alpha<\frac{1}{2}$, the α-set $\left(A(+)_{p} B\right)^{\alpha}$ of $A(+)_{p} B$ is

$$
\begin{aligned}
&\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left(\frac{3(x-5)}{9 \sqrt{2-4 \alpha}+4 \sqrt{6-9 \alpha}}\right)^{2}\right.\right. \\
&\left.+\left(\frac{3(y-8)}{12 \sqrt{2-4 \alpha}+5 \sqrt{6-9 \alpha}}\right)^{2}=1\right\}
\end{aligned}
$$

(2) For $0<\alpha<\frac{1}{2}$, the α-set $\left(A(-)_{p} B\right)^{\alpha}$ of $A(-)_{p} B$ is

$$
\begin{aligned}
&\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left(\frac{3(x-1)}{9 \sqrt{2-4 \alpha}+4 \sqrt{6-9 \alpha}}\right)^{2}\right.\right. \\
&\left.+\left(\frac{3(y-2)}{12 \sqrt{2-4 \alpha}+5 \sqrt{6-9 \alpha}}\right)^{2}=1\right\}
\end{aligned}
$$

(3) For $0<\alpha<\frac{1}{2},\left(A(\cdot)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$, where $x_{\alpha}(t)=6+(4 \sqrt{6-9 \alpha}+6 \sqrt{2-4 \alpha}) \cos t$

$$
+4 \sqrt{(2-4 \alpha)(6-9 \alpha)} \cos ^{2} t
$$

$y_{\alpha}(t)=15+\left(\frac{25}{3} \sqrt{6-9 \alpha}+12 \sqrt{2-4 \alpha}\right) \sin t$

$$
+\frac{20}{3} \sqrt{(2-4 \alpha)(6-9 \alpha)} \sin ^{2} t
$$

(4) For $0<\alpha<\frac{1}{2},\left(A(/)_{p} B\right)^{\alpha}=\left\{\left(x_{\alpha}(t), y_{\alpha}(t)\right) \mid 0 \leq t \leq 2 \pi\right\}$, where
$x_{\alpha}(t)=\frac{9+9 \sqrt{2-4 \alpha} \cos t}{6-4 \sqrt{6-9 \alpha} \cos t}, \quad y_{\alpha}(t)=\frac{15+12 \sqrt{2-4 \alpha} \sin t}{9-5 \sqrt{6-9 \alpha} \sin t}$.
For $\alpha>\frac{1}{2}$, we have $\left(A(*)_{p} B\right)^{\alpha}=\emptyset, \quad *=+,-, \cdot /$.

References

[1] J. Byun and Y. S. Yun, Parametric operations for two fuzzy numbers, Communications of Korean Mathematical Society, 28 (2013), no. 3, 635-642.
[2] C. Kang and Y. S. Yun, An extension of Zadehs max-min composition operator, International Journal of Mathematical Analysis, 9 (2015), no. 41, 2029-2035.
[3] C. Kang and Y. S. Yun, A Zadehs max-min composition operator for two 2dimensional quadratic fuzzy numbers, Far East Journal of Mathematical Sciences, 101 (2017), no. 10, 2185-2193.
[4] C. Kim and Y. S. Yun, Zadeh's extension principle for 2-dimensional triangular fuzzy numbers, Journal of The Korean Institute of Intelligent Systems, 25 (2015), no. 2, 197-202.
[5] H. S. Ko and Y. S. Yun, An extension of algebraic operations for 2-dimensional quadratic fuzzy number, Far East Journal of Mathematical Sciences, 103 (2018), no. 12, 2007-2015.
[6] B. J. Lee and Y. S. Yun, The generalized trapezoidal fuzzy sets, Journal of the Chungcheong Mathematical Society, 24 (2011), no. 2, 253-266.
[7] Y. S. Yun and B. J. Lee, The one-sided quadrangular fuzzy sets, Journal of the Chungcheong Mathematical Society, 26 (2013), no. 2, 297-308.
[8] H. J. Zimmermann, Fuzzy set Theory - and Its Applications, Kluwer-Nijhoff Publishing, Boston-Dordrecht-Lancaster, 1985.
$*$
Department of Mathematics and Research Institute for Basic Sciences
Jeju National University
Jeju 63243, Republic of Korea
E-mail: yunys@jejunu.ac.kr

