• Title/Summary/Keyword: Parameters Sensitivity

Search Result 2,078, Processing Time 0.029 seconds

Transient Analysis of Magnetodynamic Systems Using Frequency-dependent Circuit Parameters (주파수 의존적인 회로상수를 이용한 시변자장 시스템의 과도상태 해석)

  • Choi, Myung-Jun;Lee, Se-Hee;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.61-63
    • /
    • 1999
  • This paper presents an efficient method for analysis of magnetodynamic system using frequency-dependent parameters. In equivalent electric circuit of linear magnetodynamic system, parameters of inductance and resistance are not constant since they vary with its driving frequency. Once frequency-dependent parameters of equivalent electric circuit for a given system are extracted, they can be used to analyze various characteristics of system. We use the Fourier transform, the high-order sensitivity method and Taylor series in order to efficiently extract the frequency-dependent parameters of magnetodynamic system. The proposed algorithm is applied to an induction heating system to validate its numerical efficiency.

  • PDF

Parameter identification for an underwater vehicle using a sensitivity analysis (민감도 분석을 이용한 수중운동체의 계수식별)

  • 박성택;박찬국;임경식;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1667-1670
    • /
    • 1997
  • We consider the probelem of identifying and underwater vehicle. It is assumed that a priori information about the parameteric model structure and values of the hydrodynamic coefficients is available from some other schemes. The concept of relative esnsitivity is introduced to plan and efficinet identification procedure. An analysis of the sensitivity of the overall system to a particular hydrodynamic coefficinet provides a tool to evaluate the relative importance of the same coefficient in a particular maneuver. Then it can be made possible to reduce the filter size by selecting some dominatn hydrodynamic coefficients as parameters to be estimated for a given maneuver, and this fact may be used for establishing a gradual identification scheme. The main merit of a gradual identification is substantially reduced computer burden with increased nimerical stability. An illustrative simualtion result is given.

  • PDF

Shape Optimization for Reduction of Cogging Torque in Permanent Magnet Motor by Sensitivity Analysis (영구자석전동기의 코깅토오크저감을 위한 민감도에 의한 형상 최적화)

  • 박일한;이범택;한현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1246-1252
    • /
    • 1990
  • In order to reduce the cogging torque in a permanent magnet motor, a method to optimize the shape of permanent magnet and iron pole is presented. Sine the cogging torque comes from the irregular system energy variation according to the rotor position, system energy variation is taken as object function and the object function is minimized to optimize the shape. The positions of permanent magnet surface and iron pole surface are chosen as design parameters and sensitivity of object function with respect to the design parameter is calculated. The shape is changed according to sensitivity can be generated by methods that exploit the FEM formulation. A numerical example shows that the cogging torque is reduced to about 10% of the original value.

  • PDF

A Gap Sensor Design for Precision Stage (초정밀 스테이지용 변위 센서)

  • 김일해;김종혁;장동영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.453-458
    • /
    • 2004
  • A capacitate sensor is a proper device for measuring high small displacement. General design parameters and procedure are discussed and a test sensor was built to have a measuring range of 100$\mu\textrm{m}$ and a sensitivity about 30nm. This sensor has too opposing electrode of comparably large area and has nominal gap distance about 150$\mu\textrm{m}$. So as to achieve a nano order displacement sensitivity, both sensor and target system have to be considered. This is important for the sensitivity can be achieved by minimizing a system total noise level in electronic type sensor application. Typical performance of the developed sensor is demonstrated in precision moving stage having 0.1$\mu\textrm{m}$ moving resolution.

  • PDF

Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines (커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석)

  • Jang, Joo-Sup;Yoon, Young-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

Sensitivity Analysis for a Make-to-Order Inventory-Production System with Limited Order Acceptance Level (제한된 주문허용 수준을 갖는 주문공산 재고시스템을 위한 민감도 분석)

  • Kim Eungab;Kim Jiseung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.117-129
    • /
    • 2005
  • This paper considers a make-to-order inventory-production system in which customer orders are admitted only when the number of outstanding customer orders is below a value committed by the system. We deal with general distributions for the customer order Inter-arrival, production, and replenishment lead time processes. Monotonicities of the optimal average cost with respect to these distribution parameters are established using sample path coupling arguments. When distributions are given as an exponential one, we implement a sensitivity analysis on the optimal inventory policy and show that it has monotonicities with respect to system costs using dynamic programming.

Intelligent Piezoelectric Sensor For Traffic Monitoring

  • IM J. I.;PARK K. M.;WANG J. H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.263-266
    • /
    • 2004
  • This paper describes an intelligent piezoelectric traffic sensor which can be detected the over-weighted vehicles In motion. Based on finite element analysis for the sensor, the sensitivity was analyzed and the design was optimized. Studied parameters are the material properties of constitutional parts, the geometry of the sensor, the weight of the vehicle, and the speed of the vehicle. To verify the simulated results, we manufactured the sensor having the optimized geometry and the sensitivity was measured in the range from 0.5 to 3 ton of tensile and compressive stress. The measured results shows that the sensitivity and linearity of the sensor are closely agree with the designed values.

  • PDF

Removal of Phenol by Granular Activated Carbon from Aqueous Solution in Fixed-Bed Adsorption Column : Parameter Sensitivity Analysis (충진층 흡착관 내에서 입상활성탄에 의한 페놀 제거 : 매개변수 감응도 해석)

  • 윤영삼;황종연;권성헌;김인실;박판욱
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.773-782
    • /
    • 1998
  • The adsorption experiment of phenol(Ph) from aqueous solution on granular activated carbon was studied in order to design the fixed-bed adsorption column. The experimental data were analyzed by unsteady-state, one-dimensional heterogeneous model. Finite element method(FEM) was applied to analyze the sensitivity of parameter and to predict the fixed-bed adsorption column performance on operation variable changes. The prediction model showed similar effect to mass transfer and intraparticle diffusion coefficient changes suggesting that both parameter present mass transfer rate limits for GAC-phenol system. The Freundlich constants had a greater effect than kinetic parameters for the performance of fixed-bed adsorption column. FEM solution facilitated prediction of concentration history in solution and within adsorbent particle.

  • PDF

A Magnet Pole Shape Optimization of a Large Scale BLDC Motor Using a RSM With Design Sensitivity Analysis (민감도기법과 RSM을 이용한 대용량 BLDC 전동기 영구자석의 형상 최적화)

  • Shin, Pan-Seok;Chung, Hyun-Koo;Woo, Sung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.735-741
    • /
    • 2009
  • This paper presents an algorithm for the permanent magnet shape optimization of a large scale BLDC(Brushless DC) motor to minimize the cogging torque. A response surface method (RSM) using multiquadric radial basis function is employed to interpolate the objective function in design parameter space. In order to get a reasonable response surface with relatively small number of sampling data points, additional sampling points are added on the basis of design sensitivity analysis computed by using FEM. The algorithm has 2 stages: the first stage is to determine the PM arc angle, and the 2nd stage is to optimize the magnet pole shape. The developed algorithm is applied to a 5MW BLDC motor to get a minimum cogging torque. After 3 iterations with 4 design parameters, the cogging torque is reduced to 13.2% of the initial one.

Parameter Sensitivity Analysis of Autonomous Robot Vehicle for Trajectory Error and Friction Force (자율 주행 반송차의 궤적 오차와 마찰력에 대한 매개 변수의 민감도 해석)

  • 김동규;박기환;김수현;곽윤근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.115-126
    • /
    • 1996
  • In order to obtain the principal design data for developing the Autonomous Robot Vehicle(ARV), Sensitivity analysis on the trajectory error and friction force with respect to the dynamic parameters is performed. In the straight motion, the trajectory error has been proved to be much affected by the mass variance of the ARV while the lateral friction force is much affected by the location of the mass center. In the curved motion, the effect of mass and moment of inertia is considered importantly. In addition, the lateral offset gives more effect than the geometric dimension of the ARV on the trajectory errors and friction force.

  • PDF