• Title/Summary/Keyword: Parameter varying controller

Search Result 144, Processing Time 0.027 seconds

Robust $H_\infty$ Output Feedback Control of Descriptor Systems with Parameter Uncertainty and Time dDelay (파라미터 불확실성과 시간지연을 가지는 특이시스템의 견실 $H_\infty$ 출력궤환 제어)

  • 김종해
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.9-16
    • /
    • 2004
  • This paper provides an observer-based Η$\infty$ output feedback controller design method for descriptor systems with time-varying delay by just one LMI(linear matrix inequality) condition. The sufficient condition for the existence of controller and the controller design method are presented by perfect LMI approach which can be solved efficiently by convex optimization. The design procedure involves solving an LMI. Since the obtained condition can be expressed as an LMI form all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement changes of variables, and singular value decomposition. Moreover, The proposed controller design algorithm can be extended to the observer-based robust Η$\infty$ output feedback controller design method for descriptor systems with parameter uncertainty and time delay. An example is given to illustrate the results.

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.

A Pole-Assignment ACC System in the Peripheral End Milling Process (엔드밀링 공정에서 극점배치 구속적응제어 시스템)

  • Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.63-72
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes a feedrate override Adaptive Control Constraint (ACC) system was developed. The feedrate override function was accomplished through a development of programmable machine controller (PMC) interface technique on the NC controller, Nonlinear model of the cutting process was linearized as an adaptive model with a time varying process parameter. An integral type estimator was introduced for on-line estimation of the cutting process parameter, Zero order hold digital control methodology which uses pole-assignment concept for tuning of PI controllers was applied for the ACC system. Performance of the ACC system wsa confirmed on the vertical machining center equipped with fanuc OMC through a large amount of experiment.

  • PDF

Enhancement of Roll Stability by Speed-Adaptive Robust Control (속도감은 강건제어에 의한 롤 운동 특성개선)

  • Kim, Hyo-Jun;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.167-175
    • /
    • 2001
  • This paper presents design of active roll controller of a vehicle and experimental study using the electric actuating roll control system. Firstly, parameter sensitivity analysis is performed based on 3DOF linear vehicle model. The controller is designed in the frame work of gain-scheduled H$\infty$ control scheme considering the varying parameters induced by laden and running vehicle condition. In order to investigate a feasibility of an active control system, experimental work is performed using hardware-in-the -loop setup which has been constructed by the devised electric actuating system and the full vehicle model with tire characteristics. The performance is evaluated by experiment using hardware-in-the -loop simulation under the conditions of some steer maneuvers and parameter variations.

  • PDF

Design of a Variable Structure Controller Using Nonlinear Fuzzy Sliding Surfaces (비선형 퍼지 슬라이딩면을 이용한 가변구조 제어기의 설계)

  • 이희진;손홍엽;김은태;조영환;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.449-452
    • /
    • 1997
  • In this paper, we suggest a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. As appling TS fuzzy algorithm to the regulation of the nonlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method . This proposed scheme has better performance than the conventional method in reaching time parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

Design of a Variable Structure Controller with Nonlinear Fuzzy Sliding Surgaces (비선형 퍼지 슬라이딩면을 갖는 가변 구조 제어기의 설계)

  • 이희진;강형진;김정환;박민용
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.21-28
    • /
    • 1998
  • This study develops a variable structure controller using the time-varying nonlinear sliding surface instead of the fixed sliding surface, which has been the robustness against parameter variations and extraneous disturbance during the reaching phase. By appling TS fuzzy algorithm to the regulation of the rionlinear sliding surface, the reaching time of the system trajectory is faster than the fixed method. This proposed scheme has better performance than the conventional method in reaching time, parameter variation and extraneous disturbance. To demonstrate its performance, the proposed control algorithm is applied to a rotational inverted pendulum.

  • PDF

A Global Regulation Method of Nonlinear Systems with Unbounded Parameters Under State Feedback Frame (비억제 파라미터를 갖는 비선형 시스템의 전역 안정화)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • In this paper, we consider a regulation problem of nonlinear systems under two triangular conditions where there possibly exist unbounded parameters in the systems. We propose a state feedback controller with dynamic gains in order to deal with unbounded parameters based on the condition of the time-varying rate of the growing parameter. The analysis of our control scheme is carried out by Lyapunov stability method. Our control method is verified by simulation results.

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

Event-Triggered H2 Attitude Controller Design for 3 DOF Hover Systems (3 자유도 비행체 시스템의 이벤트 트리거 기반의 H2 자세 제어기 설계)

  • Jung, Hyein;Han, Seungyong;Lee, Sangmoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.139-148
    • /
    • 2020
  • This paper is concerned with the H2 attitude controller design for 3 degree of freedom (DOF) Hover systems with an event-triggered mechanism. The 3 DOF Hover system is an embedded platform for unmanned aerial vehicle (UAV) provided by Quanser. The mathematical model of this system is obtained by a linearization around operating points and it is represented as a linear parameter-varying (LPV) model. To save communication network resources, the event-triggered mechanism (ETM) is considered and the performance of the system is guaranteed by the H2 controller. The stabilization condition is obtained by using Lyapunov-Krasovskii functionals (LKFs) and some useful lemmas. The effectiveness of the proposed method is shown by simulation and experimental results.

Robust maximum power point tracker using sliding mode controller for the single-stage grid-connected photovoltaic system (슬라이딩 모드 제어기를 사용한 계통연계형 태양광 발전시스템의 강인한 최대전력점 제어기 설계)

  • Kim, Il-Song;Park, Jin-Sik;Jung, Sin-Myung;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.340-342
    • /
    • 2005
  • A sliding mode controller for the grid-connected photovoltaic system has been presented. This controller is constructed from the time-varying sliding surface In order to control the sinusoidal inductor current and solar array power simultaneously. The proposed controller can achieve the tight regulation of current and power under the parameter variation environment.

  • PDF