• Title/Summary/Keyword: Parameter convergence

Search Result 875, Processing Time 0.022 seconds

Tool Fracture Detection Using System Identification (시스템인식을 이용한 공구파손 검출)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.119-123
    • /
    • 1996
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There were so many studies to monitor and predict system, but it were mainly relied upon measuring of cutting force, current of motor spindle and using acoustic sensor, etc. In this study digital image of time series sequence was acquired taking advantage of optical technique. Then, mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR model was selected for system model, fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, we found there was a system stability.

  • PDF

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어)

  • 국태용;이진수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.427-438
    • /
    • 1991
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic system is preented. In the learning control structure, the control input converges globally and asymtotically to the desired input as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of the time-duration of trajectories, it may be achieved with system trajectories with small duration. In addition, the proposd learning control schemes are applicable to time-varying parametric systems as well as time-invariant systems, because the parameter estimation is performed at each fixed time along the iteration. In the parameter estimator, the acceleration information as well as the inversion of estimated inertia matrix are not used at all, which makes the proposed learning control schemes more feasible.

  • PDF

WEAK CONVERGENCE FOR INTERATED RANDOM MAPS

  • Lee, Oe-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.485-490
    • /
    • 1998
  • We consider a class of discrete parameter processes on a locally compact Polish space $S$ arising from successive compositions of strictly stationary Markov random maps on $S$ into itself. Sufficient conditions for the existence of the stationary solution and the weak convergence of the distributions of $\{\Gamma_n \Gamma_{n-1} \cdots \Gamma_0x \}$ are given.

  • PDF

Disturbance Compensation Control by FXLMS Algorithm (FXLMS 알고리즘을 이용한 외란보상 제어기 설계)

  • 강민식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.100-107
    • /
    • 2003
  • This paper represents a disturbance compensation control for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feed forward compensator design based on adaptive estimation by Filtered-x least mean square (FXLMS) algorithm is proposed. The convergence properties of the FXLMS algorithm are discussed and its conditions for the asymptotic convergence are derived theoretically. The effectiveness of the proposed method and the theoretical proof are verified by computer simulation.

A STRONGLY CONVERGENT PARALLEL PROJECTION ALGORITHM FOR CONVEX FEASIBILITY PROBLEM

  • Dang, Ya-Zheng;Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.93-100
    • /
    • 2012
  • In this paper, we present a strongly convergent parallel projection algorithm by introducing some parameter sequences for convex feasibility problem. To prove the strong convergence in a simple way, we transmit the parallel algorithm in the original space to an alternating one in a newly constructed product space. Thus, the strong convergence of the parallel projection algorithm is derived with the help of the alternating one under some parametric controlling conditions.

Weak Convergence of U-empirical Processes for Two Sample Case with Applications

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2002
  • In this paper, we show the weak convergence of U-empirical processes for two sample problem. We use the result to show the asymptotic normality for the generalized dodges-Lehmann estimates with the Bahadur representation for quantifies of U-empirical distributions. Also we consider the asymptotic normality for the test statistics in a simple way.

Convergence of the Filtered-x Least Mean Square Adaptive Algorithm for Active Noise Control of a Multiple Sinusoids (다중 정현파의 능동소음제어를 위한 Filtered-x 최소 평균제곱 적응 알고리듬 수렴 연구)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Application of the filtered-x Least Mean Square(LMS) adaptive filter to active noise control requires to estimate the transfer characteristics between the output and the error signal of the adaptive controller. In this paper, we derive the filtered-x adaptive noise control algorithm and analyze its convergence behavior when the acoustic noise consists of multiple sinusoids. The results of the convergence analysis of the filtered-x LMS algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Simulation results are presented to support the theoretical convergence analysis.

The Filtered-x Least Mean Fourth Algorithm for Active Noise Cancellation and Its Convergence Behavior

  • Lee, Kang-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2050-2058
    • /
    • 2001
  • In this paper, we propose the filtered-x least mean fourth (LMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the filtered-x LMF adaptive filter to active noise cancellation (ANC) requires estimating of the transfer characteristic of the acoustic path between the output and error signal of the adaptive controller. The results of 7he convergence analysis of the filtered-x LMF algorithm indicates that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

  • PDF

The Filtered-x Least Mean Fourth Algorithm for Active Noise Control and Its Convergence Analysis

  • Lee, Kang-Seung;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.66-73
    • /
    • 1996
  • In this paper, we propose the filtered-x least mean fourth (LMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the filtered-x LMF adaptive filter to active noise control(ANC) requires estimating of the transfer characteristic of the acoustic path between the output and error signal of the adaptive controller. The results of the convergence analysis of the filtered-x LMF algorithm indicates that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

  • PDF

The Filtered-x Least Mean Fourth Algorithm for Active Noise Control and Its Convergence Analysis (능동 소음 제어를 위한 Filtered-x 최소평균사승 알고리듬 및 수렴 특성에 관한 연구)

  • 이강승;이재천;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1506-1516
    • /
    • 1995
  • In this paper, we propose the filtered-x least mean fourth (FXLMF) algorithm where the error raised to the power of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian measurement noise. Application of the FXLMF adaptive filter to active noise control requires to estimate the transfer characteristics of the acoustic path between the output and the error signal of the adaptive controller. The results of the convergence analysis of the FXLMF algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Also, we newly show that the convergence behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant.

  • PDF