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Weak Convergence of U-empirical Processes for Two
Sample Case with Applications

Hyo-Il1 Park! and Jong-Hwa Na?

ABSTRACT

In this paper, we show the weak convergence of U-empirical processes for
two sample problem. We use the result to show the asymptotic normality for
the generalized Hodges-Lehmann estimates with the Bahadur representation
for quantiles of U-empirical distributions. Also we consider the asymptotic
normality for the test statistics in a simple way.

Keywords: Bahadur representation for quantile, kernel, location translation pa-
rameter, U-empirical distribution, U-empirical process, weak convergence.

1. Introduction

Let Xi,...,Xm and Y1,...,Y, be independent random samples with continu-~
ous distribution functions F' and G, respectively. Let A be any parameter, which
represents some relation between F and G such as location translation parame-
ter or measure of difference of scale parameters. Let h(zy,...,Zk;y1,-.-,4;) bea
symmetric kernel for A of degree (k,!). In this paper, we allow that k and [ need
not be the minimum sample sizes required to obtain an unbiased estimate of A.
Now we define the U-empirical distribution function on ¢t € (—o00,00) as

1
Hon = 7oy O > I (h(Xays - Xoay; Yoys- -, Y3) < 1),
(V) Q) Zhses

where A(B) is the collection of all subsets of k(l) integers chosen without re-
placement from the integers {1,...,m}{{1,...,n}). Then the corresponding U-
empirical process is defined on ¢ € (—o00, 20) as
an(t) =V N{Hmn(t) - H(t)},
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where N = m+n and H(-) is the distribution function of A(X1,..., Xi; Y1,...,Y]).
For one sample case, Silverman (1983) showed the weak convergence of the
U-empirical processes on a metric space. Arcones (1993) and Arcones and Gine
(1993) considered several asymptotic properties of the U-processes. In this paper,
we show the weak convergence of B, (t) to a normal process B(t) and then use to
show the asymptotic normality for the generalized Hodges-Lehmann estimates for
the parameters of the difference of locations and that of scales with the Bahadur
representation for quantiles of U-empirical distributions. Also we consider the
asymptotic normality for the nonparametric test statistics in a simple way.

2. Main Result

Before we state our main result, we review the asymptotic covariance function
for the process By, (t). For this purpose, let

Cc,d(sat) = Cm}[I(h(Xla aXC)Xc—}—la" . 7Xk;Y1a"' 7Yd7Yd+l, cee 7}/2) < 'S),
I(h(Xla--'aXC)Xk‘+1?'"7X2k—c;n:"'aYd,}/l+1a-"7Y'21—d) St)]

for 0 < c <k and 0 <d <. We note that for any s,t € (—00,00), (o0 = 0 and

i()()( () (720 eats0.

Form now on, we assume that as N —

M»

CO’U(an (S)a Bm'n (t))

11
o

C

m/N — X and n/N —1— X (2.1)

with 0 < A < 1. Then the following lemma is a well known result from the theory
of U-statistics (cf. Randles and Wolfe, 1979).

Lemma 2.1. Under the assumption (2.1), for each s,t € (—o0,00)

Jim. Cov(Byn (5), Bmn(t)) = k? Cl,og\ t) e C011£s)\t).

Also we obtain the representation of a U-statistic as an average of averages of 4id
random variables for two sample case (cf. Serfling, 1980) in the following lemma.
The U-statistic for A is defined as

:(k ZZh Xoyse-r Xaw; Yois -1 Yp,)-

aEA BeB
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Lemma 2.2. Let r = min([m/k],[n/l]), where [] is the greatest integer and

define

W(z1,-- s Tm; Y1y Yn)
= %{h(zly---aflik;yl,-'-,yl) +h(Tpt1s- - T2k Yig 15 - - Y1)
oot ATk k1o Tk Yrlmi 1y - - - Yrl) }-
Letting )., >, denote summation over all m!n! permutations (iy,...,4m) of
(1,...,m) and (j1,...,4n) of (1,...,n) and Zc(m,k) Zc(n’” denote summation

over all (T) (?) combinations {i1,...,4} from {1,...,m} and {ji,...,7} from
{1,...,n}, we have

Unn = m, n, ZI’V Tily - - azim7?/j17---7yjn)'

m! n!

Proof. First of all, we note that for any fixed permutation (41, ..., jn) of (1,
n), we have from Serfling (1980),

Ty Wity Timi Yt Ygm) = ThUm = B) D h(ar, ., Tk Yt Y1)
c(m,k)

Also for any fixed permutation (i1,...,%y,) of (1,...,m), we have

P W(Eit, - Timi Yt - > Yjn) = rli(n— 1)! > R@it, Tk Ysts - Yit).
c(n,l)

Therefore we have that

ZZ W(zit, ..., Tim; Yj1, - - - »Yjn)

m! n!

=kl(m—E)n =0 > Y A, T Yt - Yit)-
c(m,k) c(n,l)

This implies that

m! n!

or

—m,n, > N W (@i, Timi Yt - - -, Yjn)-

m! n!
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We note that W consists of 7 i1d random variables. Now we state our main
result in the following theorem.

Theorem 2.1. Under the assumption (2.1), Byn(t) converges weakly to a zero-
mean normal process B(t) on D(—o0,00), which is the space of functions on
(—o0, 00) that are right-continuous and have the left-hand limits, with covariance

function,

2C10(5,1) | 2C0,1(s,%)
k 3 +1 T

Cov(B(s), B(t)) =

Proof. It is easy to see that for each ¢t € (—o0,00), Bmn(t) converges in distri-
bution to a normal random variable with mean 0 and variance

o?(t) = K*Cro(t, )/ A+ 1%Coa (8, 8) /(1 — A),

since Hp,, is a U-statistic for each ¢t € (—o00,00) with Lemma 2.1. Thus it only
remains to show the tightness to prove the weak convergence of the U-embirical
process Bmn(t) to a normal process B(t) on D(—o00,00), which is a Brownian
bridge. For any given permutations « of (1,...,m) and S of (1,...,n), let

1
HX () = S (R(Zaqys -+ Ta(k); Ys(1)s - - Y80) < 1)
+ I(h(Za(k+1)> - - - » Ta(2k); YB(+1)s - - - » YB(21)) < 1)
+ ot I(h(za(rk—k+l)a < Ta(rk) YB(ri—l+1)1- - yﬂ(rl)) < t)}

Also let
Bf(t) = VN{HL(t) - H(t)}.

Then we note that from Lemma 2.2,
Bt
B, - n' E E B2 (2.2)

For 0 < y < 1, define generalized moduli of continuity €2,,, and Q28 by

Qmnly) = SUPA(y |an( ) — Bmn(t)]

and
Q38 (y) = supa(y)| B (s) — BEE, (1),

where

Ay) = {s,t: [H(s) — H(t)| < yl}.
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Then we note that 11
= B
V) < oy 352050 23)
(81

from Eq. (2.2).
For any r, let D, be the empirical distribution function of r independent
random variables uniformly distributed on [0, 1]. Define

Ve(t) = vr(Dr(t) — 1)

and
wY (y) = sup|s_g<yVr(s) — V2 (8)],

which is the modulus of continuity of V; over [0,1]. The process B2% is con-
structed from r independent random variables with distribution function A and
therefore the process B25,0 H~! and r~1/2N1/2V, restricted to the set H(—o00,c0)
have the same distribution. From the definitions of Q?,{i and w}/ , it follows that

EQ30(y) < \/ng,Y ),
with equality if H is continuous. Thus substituting the inequality (2.3) gives
EQumaly) < \/ng)’ (v)- (2:4)
Now Chebyshev’s inequality and (2.4) give

yi0 vl

< lmTm yoee 1 L EWY ()
y40 r

= (0 foralle >0,

lmlim y oo P{Qma(y) > e} < 11151E Noroof LE(Qmn(y))

from the tightness of the ordinary processes since V, counsists of r iid random
variables and the fact that N/r converges to a positive real number. Therefore
we may conclude that B, (¢) converges weakly to a zero-mean normal process
B(t) on D(—00,00). a

We note that with the special construction of B,,, as in section 23.4 of p.771
in Shorack and Wellner (1985), we may have a stronger conclusion such that

almost surely

| Brn — Bll_%2 — 0.
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3. Applications

Suppose that A is the location translation parameter between F' and G such

G(z) = F(z + A) (3.1)
for all £ € (—00,00). Then the kernel for A is of the form
MXi;h) =X -1
of degree (1,1). Thus the U-empirical distribution is
1
Hmn(t) = “‘ZZI(XZ -Y; <)

Therefore the covariance function of the limiting process B(t) follows easily from
Lemma 2.1 with the continuity assumption for distribution for ' and G as

Cov(B(s), B(t) = -i-cov[f(xl _ Y, < 8), I(X1 — Y < 8)]
+ . ConlI(X: ~¥i < 5),I(X; = Y3 < 1),
where
Coo[I(Xy - Y1 < ), [(X1 — Y3 < )]
_ /_ 2(1 — G(z — min(s, 1)))*dF (z)
- /:(1 _ Gz - 5))dF(a) /_Z(l — Gz — ))dF(a)
and

Cov[I(X1 Y1 <3),I(Xe - Y1 <t)]
/oo F(z — min(s, t))%dG(z) — /

-0

o0

[o o]
F(z -- 5)dG(z) / F(z — t)dG(z).
—oQ
When A = 0, since F' = G, the covariance function can be simplified as

Cov[B(s), B(t)] = %{/_00(1—~F(x—min(s,t))2dF(a:)
_ /OO(I—F(:B—S dF(z / (1= F(z — t))dF (z)}
+ -————{/ (¢ — min(s, t))%dF (z)

—/; :c—-deac)/ F(z —t))dF(z)}.
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Let 0 < p < 1. Then for any given p, we define quantile functions H~! and
H.! as

H™\(p) = inf{t : H(t) > p} and Hy(p) = inf{t : Hma(t) 2 p).

Since A is a median of H, we may take Apn = mn(1/2) as an estimate of A.
We note that A,,, is also a Hodges-Lehmann estimate and can be considered as
a generalized L-estimate in the sense of Serfling (1984). In order to derive the
asymptotic normality of VN (A, — A), it would be convenient to consider the
following Bahadur representations for the quantiles of the U-empirical distribu-
tion for two sample case.

Theorem 3.1. Suppose that there is a real number &, such that H(§,) = p,
where H(:) is the distribution function of the kernel h(X1,...,Xx;Y1,...,Y)).
Also suppose that H is twice differentiable in a neighborhood of €, and H(£,) > 0.
Then with probability one,

bty = " (5”)[;(2’)"" &) 4 o (10g 11,

where &, = H;1(p).

The proof of Theorem 3.2 will be shown shortly with the following four lemmas
(cf. See the proof of Theorem 3.1 of Choudhury and Serfling, 1988).

Lemma 3.1. Let h(X;y,...,Xk; 11,...,Y)) satisfy
Uh(s) = Elexp{sh(X1,..., Xk Y1,..., )} < 00,0 < s < 3.
Then
Elezp{sUpn}] < xp;(g),o <5< sor,
where r = min([m/k], [n,!]), which was defined in Section 2.

Lemma 3.2. Leth(z1,...,Zk;y1,---,Y1) be a kernel for A witha < h(zy,...,zx
Yty - y1) < b. Then for any t > 0, we have that

P{Upn — A >t} < e 2rt?/(b=0)?,

The proofs of Lemma 3.1 and 3.2 follow exactly as those of Theorems A and
B in p. 201 of Serfling (1980) by noting that W(-) in Lemma 2.2 is an average of
r 4id random variables.
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Lemma 3.3. Suppose that H is differentiable at &, with H(p) > 0. Then with

probability one,
|H s (p) = &5l = O(N~1/?(logN)*?)

for all sufficiently large N.

Proof. By choosing a sequence of positive constants ey such as

_ (logN)'/2
N = H'(fp)Nlﬂ

in Lemma 3.1 of Choudhury and Serfling (1988) and noting that H,, consists of
the indicator functions, we can obtain the result with the application of Lemma
3.2. O

Lemma 3.4. Suppose that H' is bounded in a neighborhood of &, with H'(€,) >
0. Let (ay) be a sequence of positive constants such that

an ~ coN"V%(logN)/? as N — oo,
for some constant ¢y > 0. Then with probability one, we have as N — oo

sup |[Hy (& +1t) — Hn(&)] — [H(& + t) — H(&)]l = O(N~3/*(logN)*/*).

ltI<an

Proof. We may prove this on the lines of Lemma 3.2 in Choudhury and Serfling
(1988). 3

Proof of Theorem 3.1. From Lemma 3.3 and 3.4, we have with probabilisy
one, as N — 00,

[HN (&) — Hn(&)] = [H(&) — H(E)l = O(N 4 (logN)¥/*).

Then by the Young’s form of Taylor’s expansion (Serfling, 1980), we have with
probability one,

[Hn (&) — Hn ()] — (& — &) H' (&) + (& — &)2H" (&) /2! + o(N ~HlogN)]
= O(N~%*(logN)*/*)

and so we have that with probability one,

(Hn (&) — Hn (&)= [(&p — &) H' (&) + (& — &) H" (&) /2] = O(N 3% (logN)*/*).
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Also we note that from Lemma 3.3, with probability one,

(ép — &) H" (&) /2! = O(NlogN).

Thus we have with probability one that

[HN(ép) - HN(fp)] - (ép - fp)Hl(fp) = O(N—3/4(IOQN)3/4)-

Since H (&) = p and HN(fp) =p+ O(N~1), we have the result.

Remark. In the conclusionof Theorem 3.1 of Choudhury and Serfling (1988),
O(max{e%,e%ﬂn“lﬂ}) should be replaced by O(max{si,ey n~12(logn)1/2}).

Then from Theorems 2.1 and 3.1, one may casily show that
VB = A) = VN(En(1/2) = 8) 5 Q ~ N(0,0%),
where % means the convergence in distribution and

dm

o? = Cov(B(0) /f )dz]?} ! = 12/\

For testing Hy : A = 0, we note that the Wilcoxon rank sum statistic W can
be written as

W= /oo 1(0 < t < 00)dHymn (1), (3.2)

which is the Mann-Whitney form. Therefore the limiting distribution of W can
be obtained by noting that

VR 710 < it - HO) = [ ” 100 < £)dByn(t)

-0

LN /Oo I(0 < t)dB(t).

—00

In order to obtain the variance, first of all, we note that
o0
/ I(0 < t)dB(t) = B(o0) — B(0).
—00

Since the normal process B has the independent increments, we may obtain the
variance as

Var(W) = Var(B(oo) — B(0)) = Var(B(c0)) + Var(B(0)) = Var(B(0)).
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Therefore we have that
1.1 1

Var(W) = Var(B(0)) = oy + m}

We note that under the model (3.1), A is also the location translation pa-
rameter between the distributions of (X7 +...+ X;)/k and (Y1 +...+ Y;)/k for
each £ > 1. Therefore we may consider

X1+...+Xk_Y1+.‘.+Yk
k k

as a generalized kernel for A of degree (k, k). Hollander (1967) considered this
generalized kernel for testing Hp : A = 0 with k¥ = 2. Based on the generalized
kernel, one may obtain the the generalized Hodges-Lehmann estimate for A such

X1, X Yi,..., V) = (3.3)

as
X,‘1+...+Xik_Yj1+...+ij

k k b

Then by calculating 1 0(s,t) and {o,1(s,t), and applying Theorem 3.2 with Ba-
hadur representation, we may derive the asymptotic normality for the generalized
Hodges-Lehmann estimate A. For tesing Hy : A = 0, we may use the following
statistic

A = med{

x
W= [ 10 <t < o)dHm(t),

-0
where Hp,, is the U-empirical distribution based on the kernel (3.3). Then the
asymptotic normality for W, follows easily as for W.
As another example, we consider a measure of the difference of scale param-
eters proposed by Lehmann (1951) such as

A= P{1 = Ya| > | X1 — Xol}.
Then the corresponding kernel would be of the form
h(X1,X2;Y1,Y2) = |Y1 — Y| — | X1 — Xy (3.4)

of degree (2,2). Then the corresponding U-empirical distribution becomes

1

Hpn(t) = (BIG] SN IV - Vil - X - X5 < 0.
2/3\2) 1<i<j<m 1<h<k<n

We note that the test statistic for testing Hy : A = 1/2 is also

T = /°° 100 < t < 00)dHymn(t),

—Co0
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where Hpy, is the U-empirical distribution based on the kernel (3.4). Therefore
the asymptotic normality for 7 follows easily with the the same arguments for
W. Also for the estimation for A, H_1(1/2) is an estimate for A and also
a generalized Hodges-Lehmann estimate. The asymptotic normality becomes
obvious.
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