# Weak Convergence of U-empirical Processes for Two Sample Case with Applications

# Hyo-Il Park<sup>1</sup> and Jong-Hwa Na<sup>2</sup>

#### ABSTRACT

In this paper, we show the weak convergence of U-empirical processes for two sample problem. We use the result to show the asymptotic normality for the generalized Hodges-Lehmann estimates with the Bahadur representation for quantiles of U-empirical distributions. Also we consider the asymptotic normality for the test statistics in a simple way.

Keywords: Bahadur representation for quantile, kernel, location translation parameter, U-empirical distribution, U-empirical process, weak convergence.

#### 1. Introduction

Let  $X_1, \ldots, X_m$  and  $Y_1, \ldots, Y_n$  be independent random samples with continuous distribution functions F and G, respectively. Let  $\Delta$  be any parameter, which represents some relation between F and G such as location translation parameter or measure of difference of scale parameters. Let  $h(x_1, \ldots, x_k; y_1, \ldots, y_l)$  be a symmetric kernel for  $\Delta$  of degree (k, l). In this paper, we allow that k and l need not be the minimum sample sizes required to obtain an unbiased estimate of  $\Delta$ . Now we define the U-empirical distribution function on  $t \in (-\infty, \infty)$  as

$$H_{mn} = \frac{1}{\binom{m}{k} \binom{n}{l}} \sum_{\alpha \in A} \sum_{\beta \in B} I(h(X_{\alpha_1}, \dots, X_{\alpha_k}; Y_{\beta_1}, \dots, Y_{\beta_l}) \le t),$$

where A(B) is the collection of all subsets of k(l) integers chosen without replacement from the integers  $\{1,\ldots,m\}(\{1,\ldots,n\})$ . Then the corresponding U-empirical process is defined on  $t \in (-\infty,\infty)$  as

$$B_{mn}(t) = \sqrt{N} \{ H_{mn}(t) - H(t) \},$$

<sup>&</sup>lt;sup>1</sup>Department of Statistics, Chong-ju University, Chong-ju, Choong-book 360-764, Korea (e-mail: hipark@chongju.ac.kr)

<sup>&</sup>lt;sup>2</sup>Department of Statistics, Chungbuk National University, Chong-ju, Choong-book 361-763, Korea (e-mail: cherin@cbucc.chungbuk.ac.kr)

where N = m+n and  $H(\cdot)$  is the distribution function of  $h(X_1, \ldots, X_k; Y_1, \ldots, Y_l)$ .

For one sample case, Silverman (1983) showed the weak convergence of the U-empirical processes on a metric space. Arcones (1993) and Arcones and Gine (1993) considered several asymptotic properties of the U-processes. In this paper, we show the weak convergence of  $B_{mn}(t)$  to a normal process B(t) and then use to show the asymptotic normality for the generalized Hodges-Lehmann estimates for the parameters of the difference of locations and that of scales with the Bahadur representation for quantiles of U-empirical distributions. Also we consider the asymptotic normality for the nonparametric test statistics in a simple way.

#### 2. Main Result

Before we state our main result, we review the asymptotic covariance function for the process  $B_{mn}(t)$ . For this purpose, let

$$\zeta_{c,d}(s,t) = Cov[I(h(X_1, \dots, X_c, X_{c+1}, \dots, X_k; Y_1, \dots, Y_d, Y_{d+1}, \dots, Y_l) \le s),$$

$$I(h(X_1, \dots, X_c, X_{k+1}, \dots, X_{2k-c}; Y_1, \dots, Y_d, Y_{l+1}, \dots, Y_{2l-d}) \le t)]$$

for  $0 \le c \le k$  and  $0 \le d \le l$ . We note that for any  $s, t \in (-\infty, \infty), \zeta_{0,0} = 0$  and

$$Cov(B_{mn}(s), B_{mn}(t)) = \frac{N}{\binom{m}{k}\binom{n}{l}} \sum_{c=0}^{k} \sum_{d=0}^{l} \binom{k}{c} \binom{m-k}{k-c} \binom{l}{d} \binom{n-l}{l-d} \zeta_{c,d}(s,t).$$

Form now on, we assume that as  $N \to \infty$ .

$$m/N \to \lambda \ and \ n/N \to 1 - \lambda$$
 (2.1)

with  $0 < \lambda < 1$ . Then the following lemma is a well known result from the theory of U-statistics (cf. Randles and Wolfe, 1979).

**Lemma 2.1.** Under the assumption (2.1), for each  $s, t \in (-\infty, \infty)$ 

$$\lim_{N \to \infty} Cov(B_{mn}(s), B_{mn}(t)) = k^2 \frac{\zeta_{1,0}(s,t)}{\lambda} + l^2 \frac{\zeta_{0,1}(s,t)}{1-\lambda}.$$

Also we obtain the representation of a U-statistic as an average of averages of iid random variables for two sample case (cf. Serfling, 1980) in the following lemma. The U-statistic for  $\Delta$  is defined as

$$U_{mn} = \frac{1}{\binom{m}{k}\binom{n}{l}} \sum_{\alpha \in A} \sum_{\beta \in B} h(X_{\alpha_1}, \dots, X_{\alpha_k}; Y_{\beta_1}, \dots, Y_{\beta_l}).$$

**Lemma 2.2.** Let r = min([m/k], [n/l]), where  $[\cdot]$  is the greatest integer and define

$$W(x_1, \dots, x_m; y_1, \dots, y_n) = \frac{1}{r} \{ h(x_1, \dots, x_k; y_1, \dots, y_l) + h(x_{k+1}, \dots, x_{2k}; y_{l+1}, \dots, y_{2l}) + \dots + h(x_{rk-k+1}, \dots, x_{rk}; y_{rl-l+1}, \dots, y_{rl}) \}.$$

Letting  $\sum_{m!} \sum_{n!}$  denote summation over all m!n! permutations  $(i_1, \ldots, i_m)$  of  $(1, \ldots, m)$  and  $(j_1, \ldots, j_n)$  of  $(1, \ldots, n)$  and  $\sum_{c(m,k)} \sum_{c(n,l)}$  denote summation over all  $\binom{m}{k} \binom{n}{l}$  combinations  $\{i_1, \ldots, i_k\}$  from  $\{1, \ldots, m\}$  and  $\{j_1, \ldots, j_l\}$  from  $\{1, \ldots, n\}$ , we have

$$U_{mn} = \frac{1}{m!} \frac{1}{n!} \sum_{m!} \sum_{n!} W(x_{i1}, \dots, x_{im}; y_{j1}, \dots, y_{jn}).$$

**Proof.** First of all, we note that for any fixed permutation  $(j_1, \ldots, j_n)$  of  $(1, \ldots, n)$ , we have from Serfling (1980),

$$r \sum_{m!} W(x_{i1}, \dots, x_{im}; y_{j1}, \dots, y_{jn}) = rk!(m-k)! \sum_{c(m,k)} h(x_{i1}, \dots, x_{ik}; y_{j1}, \dots, y_{jl}).$$

Also for any fixed permutation  $(i_1, \ldots, i_m)$  of  $(1, \ldots, m)$ , we have

$$r \sum_{n!} W(x_{i1}, \dots, x_{im}; y_{j1}, \dots, y_{jn}) = r l! (n-l)! \sum_{c(n,l)} h(x_{i1}, \dots, x_{ik}; y_{j1}, \dots, y_{jl}).$$

Therefore we have that

$$\sum_{m!} \sum_{n!} W(x_{i1}, \dots, x_{im}; y_{j1}, \dots, y_{jn})$$

$$= k!(m-k)!l!(n-l)! \sum_{c(m,k)} \sum_{c(n,l)} h(x_{i1}, \dots, x_{ik}; y_{j1}, \dots, y_{jl}).$$

This implies that

$$\sum_{m!} \sum_{n!} W(x_{i1}, \dots, x_{im}; y_{j1}, \dots, y_{jn}) = k!(m-k)!l!(n-l)!\binom{m}{k}\binom{n}{l}U_{mn},$$

or

$$U_{mn} = \frac{1}{m!} \frac{1}{n!} \sum_{m'} \sum_{n'} W(x_{i1}, \dots, x_{im}; y_{j1}, \dots, y_{jn}).$$

We note that W consists of r iid random variables. Now we state our main result in the following theorem.

**Theorem 2.1.** Under the assumption (2.1),  $B_{mn}(t)$  converges weakly to a zero-mean normal process B(t) on  $D(-\infty,\infty)$ , which is the space of functions on  $(-\infty,\infty)$  that are right-continuous and have the left-hand limits, with covariance function,

$$Cov(B(s), B(t)) = k^2 \frac{\zeta_{1,0}(s,t)}{\lambda} + l^2 \frac{\zeta_{0,1}(s,t)}{1-\lambda}.$$

**Proof.** It is easy to see that for each  $t \in (-\infty, \infty)$ ,  $B_{mn}(t)$  converges in distribution to a normal random variable with mean 0 and variance

$$\sigma^{2}(t) = k^{2} \zeta_{1,0}(t,t) / \lambda + l^{2} \zeta_{0,1}(t,t) / (1-\lambda),$$

since  $H_{mn}$  is a U-statistic for each  $t \in (-\infty, \infty)$  with Lemma 2.1. Thus it only remains to show the tightness to prove the weak convergence of the U-empirical process  $B_{mn}(t)$  to a normal process B(t) on  $D(-\infty, \infty)$ , which is a Brownian bridge. For any given permutations  $\alpha$  of  $(1, \ldots, m)$  and  $\beta$  of  $(1, \ldots, n)$ , let

$$H_{mn}^{\alpha\beta}(t) = \frac{1}{r} \{ I(h(x_{\alpha(1)}, \dots, x_{\alpha(k)}; y_{\beta(1)}, \dots, y_{\beta(l)}) \le t) + I(h(x_{\alpha(k+1)}, \dots, x_{\alpha(2k)}; y_{\beta(l+1)}, \dots, y_{\beta(2l)}) \le t) + \dots + I(h(x_{\alpha(rk-k+1)}, \dots, x_{\alpha(rk)}; y_{\beta(rl-l+1)}, \dots, y_{\beta(rl)}) \le t) \}.$$

Also let

$$B_{mn}^{\alpha\beta}(t) = \sqrt{N} \{ H_{mn}^{\alpha\beta}(t) - H(t) \}.$$

Then we note that from Lemma 2.2,

$$B_{mn}(t) = \frac{1}{m!} \frac{1}{n!} \sum_{\alpha} \sum_{\beta} B_{mn}^{\alpha\beta}(t). \tag{2.2}$$

For 0 < y < 1, define generalized moduli of continuity  $\Omega_{mn}$  and  $\Omega_{mn}^{\alpha\beta}$  by

$$\Omega_{mn}(y) = \sup_{A(y)} |B_{mn}(s) - B_{mn}(t)|$$

and

$$\Omega_{mn}^{\alpha\beta}(y) = \sup_{A(y)} |B_{mn}^{\alpha\beta}(s) - B_{mn}^{\alpha\beta}(t)|,$$

where

$$A(y) = \{s, t : |H(s) - H(t)| \le y|\}.$$

Then we note that

$$\Omega_{mn}(y) \le \frac{1}{m!} \frac{1}{n!} \sum_{\alpha} \sum_{\beta} \Omega_{mn}^{\alpha\beta}$$
 (2.3)

from Eq. (2.2).

For any r, let  $D_r$  be the empirical distribution function of r independent random variables uniformly distributed on [0,1]. Define

$$V_r(t) = \sqrt{r}(D_r(t) - t)$$

and

$$\omega_r^V(y) = \sup_{|s-t| < y} |V_r(s) - V_r(t)|,$$

which is the modulus of continuity of  $V_r$  over [0,1]. The process  $B_{mn}^{\alpha\beta}$  is constructed from r independent random variables with distribution function H and therefore the process  $B_{mn}^{\alpha\beta} \circ H^{-1}$  and  $r^{-1/2}N^{1/2}V_r$  restricted to the set  $H(-\infty,\infty)$  have the same distribution. From the definitions of  $\Omega_{mn}^{\alpha\beta}$  and  $\omega_r^V$ , it follows that

$$E\Omega_{mn}^{\alpha\beta}(y) \le \sqrt{\frac{N}{r}} E\omega_r^V(y),$$

with equality if H is continuous. Thus substituting the inequality (2.3) gives

$$E\Omega_{mn}(y) \le \sqrt{\frac{N}{r}} E\omega_r^V(y).$$
 (2.4)

Now Chebyshev's inequality and (2.4) give

$$\lim_{y\downarrow 0} \overline{\lim}_{N\to\infty} P\{\Omega_{mn}(y) \geq \varepsilon\} \leq \lim_{y\downarrow 0} \overline{\lim}_{N\to\infty} \varepsilon^{-1} E(\Omega_{mn}(y))$$

$$\leq \lim_{y\downarrow 0} \overline{\lim}_{N\to\infty} \varepsilon^{-1} \sqrt{\frac{N}{r}} E(\omega_r^V(y))$$

$$= 0 \text{ for all } \varepsilon > 0,$$

from the tightness of the ordinary processes since  $V_r$  consists of r iid random variables and the fact that N/r converges to a positive real number. Therefore we may conclude that  $B_{mn}(t)$  converges weakly to a zero-mean normal process B(t) on  $D(-\infty,\infty)$ .

We note that with the special construction of  $B_{mn}$  as in section 23.4 of p.771 in Shorack and Wellner (1985), we may have a stronger conclusion such that almost surely

$$||B_{mn} - B||_{-\infty}^{\infty} \to 0.$$

## 3. Applications

Suppose that  $\Delta$  is the location translation parameter between F and G such as

$$G(x) = F(x + \Delta) \tag{3.1}$$

for all  $x \in (-\infty, \infty)$ . Then the kernel for  $\Delta$  is of the form

$$h(X_1; Y_1) = X_1 - Y_1$$

of degree (1,1). Thus the U-empirical distribution is

$$H_{mn}(t) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} I(X_i - Y_j \le t).$$

Therefore the covariance function of the limiting process B(t) follows easily from Lemma 2.1 with the continuity assumption for distribution for F and G as

$$Cov(B(s), B(t)) = \frac{1}{\lambda} Cov[I(X_1 - Y_1 \le s), I(X_1 - Y_2 \le t)] + \frac{1}{1 - \lambda} Cov[I(X_1 - Y_1 \le s), I(X_2 - Y_1 \le t)],$$

where

$$Cov[I(X_1 - Y_1 \le s), I(X_1 - Y_2 \le t)]$$

$$= \int_{-\infty}^{\infty} (1 - G(x - \min(s, t)))^2 dF(x)$$

$$- \int_{-\infty}^{\infty} (1 - G(x - s)) dF(x) \int_{-\infty}^{\infty} (1 - G(x - t)) dF(x)$$

and

$$Cov[I(X_{1} - Y_{1} \le s), I(X_{2} - Y_{1} \le t)] = \int_{-\infty}^{\infty} F(x - \min(s, t))^{2} dG(x) - \int_{-\infty}^{\infty} F(x - s) dG(x) \int_{-\infty}^{\infty} F(x - t) dG(x).$$

When  $\Delta = 0$ , since F = G, the covariance function can be simplified as

$$Cov[B(s), B(t)] = \frac{1}{\lambda} \{ \int_{-\infty}^{\infty} (1 - F(x - \min(s, t))^{2} dF(x) - \int_{-\infty}^{\infty} (1 - F(x - s)) dF(x) \int_{-\infty}^{\infty} (1 - F(x - t)) dF(x) \} + \frac{1}{1 - \lambda} \{ \int_{-\infty}^{\infty} F(x - \min(s, t))^{2} dF(x) - \int_{-\infty}^{\infty} F(x - s) dF(x) \int_{-\infty}^{\infty} F(x - t) dF(x) \}.$$

Let 0 . Then for any given <math>p, we define quantile functions  $H^{-1}$  and  $H_{mn}^{-1}$  as

$$H^{-1}(p) = \inf\{t : H(t) \ge p\} \text{ and } H^{-1}_{mn}(p) = \inf\{t : H_{mn}(t) \ge p\}.$$

Since  $\Delta$  is a median of H, we may take  $\hat{\Delta}_{mn} = H_{mn}(1/2)$  as an estimate of  $\Delta$ . We note that  $\hat{\Delta}_{mn}$  is also a Hodges-Lehmann estimate and can be considered as a generalized L-estimate in the sense of Serfling (1984). In order to derive the asymptotic normality of  $\sqrt{N}(\hat{\Delta}_{mn} - \Delta)$ , it would be convenient to consider the following Bahadur representations for the quantiles of the U-empirical distribution for two sample case.

Theorem 3.1. Suppose that there is a real number  $\xi_p$  such that  $H(\xi_p) = p$ , where  $H(\cdot)$  is the distribution function of the kernel  $h(X_1, \ldots, X_k; Y_1, \ldots, Y_l)$ . Also suppose that H is twice differentiable in a neighborhood of  $\xi_p$  and  $H(\xi_p) > 0$ . Then with probability one,

$$\hat{\xi}_p - \xi_p = \frac{H(\xi_p) - H_{mn}(\xi_p)}{H'(\xi_p)} + O(N^{-3/4} (\log N)^{3/4}),$$

where  $\hat{\xi}_{p} = H_{mn}^{-1}(p)$ .

The proof of Theorem 3.2 will be shown shortly with the following four lemmas (cf. See the proof of Theorem 3.1 of Choudhury and Serfling, 1988).

Lemma 3.1. Let  $h(X_1, \ldots, X_k; Y_1, \ldots, Y_l)$  satisfy

$$\Psi_h(s) = E[exp\{sh(X_1, \dots, X_k; Y_1, \dots, Y_l)\}] < \infty, 0 < s \le s_0.$$

Then

$$E[exp\{sU_{mn}\}] \le \Psi_h^r(\frac{s}{r}), 0 < s \le s_0 r,$$

where  $r = \min([m/k], [n, l])$ , which was defined in Section 2.

**Lemma 3.2.** Let  $h(x_1, \ldots, x_k; y_1, \ldots, y_l)$  be a kernel for  $\Delta$  with  $a \leq h(x_1, \ldots, x_k; y_1, \ldots, y_l) \leq b$ . Then for any t > 0, we have that

$$P\{U_{mn} - \Delta \ge t\} \le e^{-2rt^2/(b-a)^2}.$$

The proofs of Lemma 3.1 and 3.2 follow exactly as those of Theorems A and B in p. 201 of Serfling (1980) by noting that  $W(\cdot)$  in Lemma 2.2 is an average of r iid random variables.

**Lemma 3.3.** Suppose that H is differentiable at  $\xi_p$  with  $H(\xi_p) > 0$ . Then with probability one,

$$|H_{mn}^{-1}(p) - \xi_p| = O(N^{-1/2}(logN)^{1/2})$$

for all sufficiently large N.

**Proof.** By choosing a sequence of positive constants  $\varepsilon_N$  such as

$$\varepsilon_N = \frac{(\log N)^{1/2}}{H'(\xi_p)N^{1/2}}$$

in Lemma 3.1 of Choudhury and Serfling (1988) and noting that  $H_{mn}$  consists of the indicator functions, we can obtain the result with the application of Lemma 3.2.

**Lemma 3.4.** Suppose that H' is bounded in a neighborhood of  $\xi_p$  with  $H'(\xi_p) > 0$ . Let  $(a_n)$  be a sequence of positive constants such that

$$a_n \sim c_0 N^{-1/2} (log N)^{1/2}$$
 as  $N \to \infty$ ,

for some constant  $c_0 > 0$ . Then with probability one, we have as  $N \to \infty$ 

$$\sup_{|t| \le a_n} |[H_N(\xi_p + t) - H_N(\xi_p)] - [H(\xi_p + t) - H(\xi_p)]| = O(N^{-3/4}(\log N)^{3/4}).$$

**Proof.** We may prove this on the lines of Lemma 3.2 in Choudhury and Serfling (1988).

Proof of Theorem 3.1. From Lemma 3.3 and 3.4, we have with probability one, as  $N \to \infty$ ,

$$|[H_N(\hat{\xi}_p) - H_N(\xi_p)] - [H(\hat{\xi}_p) - H(\xi_p)]| = O(N^{-3/4}(\log N)^{3/4}).$$

Then by the Young's form of Taylor's expansion (Serfling, 1980), we have with probability one,

$$[H_N(\hat{\xi}_p) - H_N(\xi_p)] - [(\hat{\xi}_p - \xi_p)H'(\xi_p) + (\hat{\xi}_p - \xi_p)^2 H''(\xi_p)/2! + o(N^{-1}logN)]$$

$$= O(N^{-3/4}(logN)^{3/4})$$

and so we have that with probability one,

$$[H_N(\hat{\xi}_p) - H_N(\xi_p)] - [(\hat{\xi}_p - \xi_p)H'(\xi_p) + (\hat{\xi}_p - \xi_p)^2 H''(\xi_p)/2!] = O(N^{-3/4}(\log N)^{3/4}).$$

Also we note that from Lemma 3.3, with probability one,

$$(\hat{\xi}_p - \xi_p)^2 H''(\xi_p)/2! = O(N^{-1}logN).$$

Thus we have with probability one that

$$[H_N(\hat{\xi}_p) - H_N(\xi_p)] - (\hat{\xi}_p - \xi_p)H'(\xi_p) = O(N^{-3/4}(\log N)^{3/4}).$$

Since  $H(\xi_p) = p$  and  $H_N(\hat{\xi}_p) = p + O(N^{-1})$ , we have the result.

**Remark.** In the conclusion of Theorem 3.1 of Choudhury and Serfling (1988),  $O(\max\{\varepsilon_n^2, \varepsilon_n^{1/2} n^{-1/2}\})$  should be replaced by  $O(\max\{\varepsilon_n^2, \varepsilon_n^{1/2} n^{-1/2} (\log n)^{1/2}\})$ .

Then from Theorems 2.1 and 3.1, one may easily show that

$$\sqrt{N}(\hat{\Delta}_{mn} - \Delta) = \sqrt{N}(H_{mn}^{-1}(1/2) - \Delta) \stackrel{d}{\to} Q \sim N(0, \sigma^2),$$

where  $\stackrel{d}{\rightarrow}$  means the convergence in distribution and

$$\sigma^2 = Cov(B(0), B(0)) \{ \left[ \int_{-\infty}^{\infty} f^2(x) dx \right]^2 \}^{-1} = \frac{1}{12} \{ \frac{1}{\lambda} + \frac{1}{1-\lambda} \} \{ \left[ \int_{-\infty}^{\infty} f^2(x) dx \right]^2 \}^{-1}.$$

For testing  $H_0: \Delta = 0$ , we note that the Wilcoxon rank sum statistic W can be written as

$$W = \int_{-\infty}^{\infty} I(0 \le t < \infty) dH_{mn}(t), \tag{3.2}$$

which is the Mann-Whitney form. Therefore the limiting distribution of W can be obtained by noting that

$$\sqrt{N} \int_{-\infty}^{\infty} I(0 \le t) d(H_{mn}(t) - H(t)) = \int_{-\infty}^{\infty} I(0 \le t) dB_{mn}(t)$$

$$\stackrel{d}{\to} \int_{-\infty}^{\infty} I(0 \le t) dB(t).$$

In order to obtain the variance, first of all, we note that

$$\int_{-\infty}^{\infty} I(0 \le t) dB(t) = B(\infty) - B(0).$$

Since the normal process B has the independent increments, we may obtain the variance as

$$Var(W) = Var(B(\infty) - B(0)) = Var(B(\infty)) + Var(B(0)) = Var(B(0)).$$

Therefore we have that

$$Var(W) = Var(B(0)) = \frac{1}{12} \{ \frac{1}{\lambda} + \frac{1}{1-\lambda} \}.$$

We note that under the model (3.1),  $\Delta$  is also the location translation parameter between the distributions of  $(X_1 + \ldots + X_k)/k$  and  $(Y_1 + \ldots + Y_k)/k$  for each  $k \geq 1$ . Therefore we may consider

$$h(X_1, \dots, X_k; Y_1, \dots, Y_k) = \frac{X_1 + \dots + X_k}{k} - \frac{Y_1 + \dots + Y_k}{k}$$
(3.3)

as a generalized kernel for  $\Delta$  of degree (k,k). Hollander (1967) considered this generalized kernel for testing  $H_0: \Delta=0$  with k=2. Based on the generalized kernel, one may obtain the the generalized Hodges-Lehmann estimate for  $\Delta$  such as

$$\hat{\Delta} = med\{\frac{X_{i1} + \ldots + X_{ik}}{k} - \frac{Y_{j1} + \ldots + Y_{jk}}{k}\}.$$

Then by calculating  $\zeta_{1,0}(s,t)$  and  $\zeta_{0,1}(s,t)$ , and applying Theorem 3.2 with Bahadur representation, we may derive the asymptotic normality for the generalized Hodges-Lehmann estimate  $\hat{\Delta}$ . For tesing  $H_0: \Delta = 0$ , we may use the following statistic

$$W_k = \int_{-\infty}^{\infty} I(0 \le t < \infty) dH_{mn}(t),$$

where  $H_{mn}$  is the U-empirical distribution based on the kernel (3.3). Then the asymptotic normality for  $W_k$  follows easily as for W.

As another example, we consider a measure of the difference of scale parameters proposed by Lehmann (1951) such as

$$\Delta = P\{|Y_1 - Y_2| > |X_1 - X_2|\}.$$

Then the corresponding kernel would be of the form

$$h(X_1, X_2; Y_1, Y_2) = |Y_1 - Y_2| - |X_1 - X_2|$$
(3.4)

of degree (2,2). Then the corresponding U-empirical distribution becomes

$$H_{mn}(t) = \frac{1}{\binom{m}{2}\binom{n}{2}} \sum_{1 \le i < j \le m} \sum_{1 \le h < k \le n} I(|Y_h - Y_k| - |X_i - X_j| \le t).$$

We note that the test statistic for testing  $H_0: \Delta = 1/2$  is also

$$T = \int_{-\infty}^{\infty} I(0 \le t < \infty) dH_{mn}(t),$$

where  $H_{mn}$  is the U-empirical distribution based on the kernel (3.4). Therefore the asymptotic normality for T follows easily with the the same arguments for W. Also for the estimation for  $\Delta$ ,  $H_{mn}^{-1}(1/2)$  is an estimate for  $\Delta$  and also a generalized Hodges-Lehmann estimate. The asymptotic normality becomes obvious.

### Acknowledgement

The authors wish to express their sincere appreciations to the referees for pointing out errors.

# REFERENCES

- Arcones, M. A. and Gine, E. (1993). "Limit theorems for U-processes", *The Annals of Probability*, **21**, 1494-1542.
- Arcones, M. A. (1996). "The Bahadur-Kiefer representation for U-quantiles", *The Annals of Statistics*, **24**, 1400-1422.
- Choudhury, J. and Serfling, R. J. (1988). "Generalized order statistics, Bahadur representations and sequential nonparametric fixed-width confidence intervals", Journal of Statistical Planning and Inference, 19, 269-282.
- Hollander, M. (1967). "Asymptotic efficiency of two nonparametric competitors of Wilcoxon's two test", *Journal of the American Statistical Association*, **62**, 939-949.
- Lehmann, E. L. (1951). "Consistency and unbiasedness of certain nonparametric tests", *The Annals of Mathematical Statistics*, **22**, 165-179.
- Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Non-parametric Statistics, John Wiley and Sons, Inc.
- Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, John Wiley and Sons, Inc.
- Serfling, R. J. (1984). "Generalized L-, M- and R-statistics", The Annals of Statistics, 12, 176-86.
- Shorack, G. R. and Wellner, J. A. (1986). *Empirical Processes with Applications to Statistics*, John Wiley and Sons, Inc.

Silverman, B. W. (1983). "Convergence of a class of empirical distribution functions of dependent random variables", *The Annals of Probability*, 11, 745-751.