• Title/Summary/Keyword: Parallel flow field

Search Result 157, Processing Time 0.027 seconds

The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet - (PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 -)

  • Kim, Dong-Keon;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.

NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME (다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method (영역분할법과 유한요소해석을 이용한 유동장의 병렬계산)

  • Choi Hyounggwon;Kim Beomjun;Kang Sungwoo;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

A Study on Logconductivity-Head Cross Covariance in Two-Dimensional Nonstationary Porous Formations (비정체형 2차원 다공성 매질의 대수투수계수-수두 교차공분산에 관한 연구)

  • 성관제
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.215-222
    • /
    • 1996
  • An expression for the cross covariance of the logconductivity and the head in nonstationary porous formation is obtained. This cross covariance plays a key role in the inverse problem, i.e., in inferring the statistical characteristics of the conductivity field from head data. The nonstationary logconductivity is modeled as superposition of definite linear trend and stationary fluctuation and the hydraulic head in saturated aquifers is found through stochastic analysis of a steady, two-dimensional flow. The cross covariance with a Gaussian correlation function is investigated for two particular cases where the trend is either parallel or normal to the head gradient. The results show that cross covariances are stationary except along separation distances parallel to the mean flow direction for the case where the trend is parallel to head gradient. Also, unlike the stationary model, the cross covariance along distances normal to flow direction is non-zero. From these observations we conclude that when a trend in the conductivity field is suspected, this information must be incorporated in the analysis of groundwater flow and solute transjport.

  • PDF

Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method (격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향)

  • Shin, Myung-Seob;Yoon, Joon-Yong;Byun, Sung-Joon;Kim, Kak-Joong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

Numerical Analysis of Flow and Heat Transfer in Duct with Repeated Cylindrical Blockages by Non-orthogonal Coordinate Transformation (주기적인 원주형 장애물이 있는 덕트유동 및 열전달의 비직교좌표변환에 의한 해석)

  • Choi, Y.D.;Lee, G.H.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.473-488
    • /
    • 1988
  • This paper is concerned with the prediction of two dimensional turbulent flows in the parallel plate with the repeated cylindrical blockages. The purpose of this paper is to find the effect of the eccentricity and the pitch of the repeated cylindrical blockages on the flow field, heat transfer coefficients and friction factors. A special technique is developed for the solution of the fully developed turbulent recirculating flow, in which the flow field varies periodically. A non-othogonal coordinate transformation is employed to solve the momentum and the energy equations. The results show that the pitch ratio or the eccentricity of the repeated blockages become smaller, or the Reynolds number of the flow larger, friction factors and heat transfer coefficients increase.

  • PDF

A Study on the Flow Characteristics of the Triple Jets Using Particle Image Velocimetry (PIV를 이용한 삼중 제트의 유동 특성에 관한 연구)

  • Lee Myung Jae;Yoon Soon Hyun;Kim Dong Keon;Kim Moon Kyung
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.28-35
    • /
    • 2005
  • Experiments were conducted to show the characteristics of the flow on triple parallel plane impinging jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry(PIV) to investigate the flow field generated by the air issued from three identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5000 and 1000 based on the nozzle width and the case of nozzle-to-plate distances were two times, six times and ten times the width of the nozzle. Results show that recirculation region of Re=5000 is the stronger than that of Re=1000. Therefore, velocity loss of centerline for Re=5000 that shows strongly recirculation region takes effect greatly.

  • PDF

Inverse Problem of Determining Unknown Inlet Temperature Profile in Two Phase Laminar Flow in a Parallel Plate Duct by Using Regularization Method (조정법을 이용한 덕트 내의 이상 층류 유동에 대한 입구 온도분포 역해석)

  • Hong, Yun-Ky;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1124-1132
    • /
    • 2004
  • The inverse problem of determining unknown inlet temperature in thermally developing, hydrodynamically developed two phase laminar flow in a parallel plate duct is considered. The inlet temperature profile is determined by measuring temperature in the flow field. No prior information is needed for the functional form of the inlet temperature profile. The inverse convection problem is solved by minimizing the objective function with regularization method. The conjugate gradient method as iterative method and the Tikhonov regularization method are employed. The effects of the functional form of inlet temperature, the number of measurement points and the measurement errors are investigated. The accuracy and efficiency of these two methods are compared and discussed.

Numerical Computation of Vertex Behind a Bluff Body in the Flow between Parallel Plates (평행평판 내의 지주에 의한 와동 유동에 관한 수치해석)

  • 김동성;유영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1163-1170
    • /
    • 1992
  • A computer program was developed to analyze the two-dimensional unsteady incompressible viscous flow behind a rectangular bluff body between two parallel plates. The Peaceman-Rachford alternating direction implicit numerical method and Wachspress parameter were adopted to solve the governing equations in vorticity-transport and stream function formulation. The steady state flow and the vortex flow behind a rectangular bluff body in a chemical were investigated for Reynolds numbers of 200 and 500. The vortex shedding was generated by a physical pertubation numerically imposed at the center of the flow field for a short time. It was observed that the perturbed flow became periodic after a transient period.