• Title/Summary/Keyword: Parallel GPU

Search Result 284, Processing Time 0.022 seconds

HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control (교통신호제어를 위한 HOG 기반 보행자 검출 및 행동패턴 인식)

  • Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1017-1021
    • /
    • 2013
  • The traffic signal has been widely used in the transport system with a fixed time interval currently. This kind of setting time was determined based on experience for vehicles to generate a waiting time while allowing pedestrians crossing the street. However, this strict setting causes inefficient problems in terms of economic and safety crossing. In this research, we propose a monitoring algorithm to detect, track and check pedestrian crossing the crosswalk by the patterns of behavior. This monitoring system ensures the safety for pedestrian and keeps the traffic flow in efficient. In this algorithm, pedestrians are detected by using HOG feature which is robust to illumination changes in outdoor environment. According to a complex computation, the parallel process with the GPU as well as CPU is adopted for real-time processing. Therefore, pedestrians are tracked by the relationship of hue channel in image sequence according to the predefined pedestrian zone. Finally, the system checks the pedestrians' crossing on the crosswalk by its HOG based behavior patterns. In experiments, the parallel processing by both GPU and CPU was performed so that the result reaches 16 FPS (Frame Per Second). The accuracy of detection and tracking was 93.7% and 91.2%, respectively.

Enhancement of H.264/AVC Encoding Speed and Reduction of CPU Load through Parallel Programming Based on CUDA (CUDA 기반의 병렬 프로그래밍을 통한 H.264/AVC 부호화 속도 향상 및 CPU 부하 경감)

  • Jang, Eun-Been;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • In order to enhance encoding speed in dynamic image encoding using H.264/AVC, reducing the time for motion estimation which takes a large portion of the processing time is very important. An approach using graphics processing unit(GPU) as a coprocessor to assist the central processing unit(CPU) in computing massive data, will be a way to reduce the processing time. In this paper, we present an efficient block-level parallel algorithm for the motion estimation(ME) on a computer unified device architecture(CUDA) platform developed in general-purpose computation on GPU. Experiments are carried out to verify the effectiveness of the proposed algorithm.

Parallelization of CUSUM Test in a CUDA Environment (CUDA 환경에서 CUSUM 검증의 병렬화)

  • Son, Changhwan;Park, Wooyeol;Kim, HyeongGyun;Han, KyungSook;Pyo, Changwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.476-481
    • /
    • 2015
  • We have parallelized the cumulative sum (CUSUM) test of NIST's statistical random number test suite in a CUDA environment. Storing random walks in an array instead of in scalar variables eliminates data dependence. The change in data structure makes it possible to apply parallel scans, scatters, and reductions at each stage of the test. In addition, serial data exchanges between CPU and GPU are removed by migrating CPU's tasks to GPU. Finally we have optimized global memory accesses. The overall speedup is 23 times over the sequential version. Our results contribute to improving security of random numbers for cryptographic keys as well as reducing the time for evaluation of randomness.

High-Speed Implementations of Block Ciphers on Graphics Processing Units Using CUDA Library (GPU용 연산 라이브러리 CUDA를 이용한 블록암호 고속 구현)

  • Yeom, Yong-Jin;Cho, Yong-Kuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.23-32
    • /
    • 2008
  • The computing power of graphics processing units(GPU) has already surpassed that of CPU and the gap between their powers is getting wider. Thus, research on GPGPU which applies GPU to general purpose becomes popular and shows great success especially in the field of parallel data processing. Since the implementation of cryptographic algorithm using GPU was started by Cook et at. in 2005, improved results using graphic libraries such as OpenGL and DirectX have been published. In this paper, we present skills and results of implementing block ciphers using CUDA library announced by NVIDIA in 2007. Also, we discuss a general method converting source codes of block ciphers on CPU to those on GPU. On NVIDIA 8800GTX GPU, the resulting speeds of block cipher AES, ARIA, and DES are 4.5Gbps, 7.0Gbps, and 2.8Gbps, respectively which are faster than the those on CPU.

Fast Multi-GPU based 3D Backprojection Method (다중 GPU 기반의 고속 삼차원 역전사 기법)

  • Lee, Byeong-Hun;Lee, Ho;Kye, Hee-Won;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.209-218
    • /
    • 2009
  • 3D backprojection is a kind of reconstruction algorithm to generate volume data consisting of tomographic images, which provides spatial information of the original 3D data from hundreds of 2D projections. The computational time of backprojection increases in proportion to the size of volume data and the number of projection images since the value of every voxel in volume data is calculated by considering corresponding pixels from hundreds of projections. For the reduction of computational time, fast GPU based 3D backprojection methods have been studied recently and the performance of them has been improved significantly. This paper presents two multiple GPU based methods to maximize the parallelism of GPU and compares the efficiencies of two methods by considering both the number of projections and the size of volume data. The first method is to generate partial volume data independently for all projections after allocating a half size of volume data on each GPU. The second method is to acquire the entire volume data by merging the incomplete volume data of each GPU on CPU. The in-complete volume data is generated using the half size of projections after allocating the full size of volume data on each GPU. In experimental results, the first method performed better than the second method when the entire volume data can be allocated on GPU. Otherwise, the second method was efficient than the first one.

  • PDF

Design and Implementation of High-Resolution Integral Imaging Display System using Expanded Depth Image

  • Song, Min-Ho;Lim, Byung-Muk;Ryu, Ga-A;Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • For 3D display applications, auto-stereoscopic display methods that can provide 3D images without glasses have been actively developed. This paper is concerned with developing a display system for elemental images of real space using integral imaging. Unlike the conventional method, which reduces a color image to the level as much as a generated depth image does, we have minimized original color image data loss by generating an enlarged depth image with interpolation methods. Our method was efficiently implemented by applying a GPU parallel processing technique with OpenCL to rapidly generate a large amount of elemental image data. We also obtained experimental results for displaying higher quality integral imaging rather than one generated by previous methods.

Implementation of Parallel Computer Generated Hologram Using Multi-GPGPU (다중 GPGPU를 이용한 컴퓨터 생성 홀로그램의 병렬화 구현)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1177-1186
    • /
    • 2014
  • Computer-generated hologram (CGH) is to mathematically model optical phenomenon with digital computer. Because it requires huge amount of computational power, a fast and high performance technique is needed. In this paper, we proposed two parallelizations for CGH calculation. The first is to parallelize CGH algorithm in a GPU (general processing unit) and the second is to parallelize multiple GPUs. The proposed algorithm was implemented in GTX780 Ti GPU. It calculates a $1,024{\times}1,024$ hologram with 10K object points for about 24ms.

GPU-accelerated Lattice Boltzmann Simulation for the Prediction of Oil Slick Movement in Ocean Environment (GPU 가속 기술을 이용한 격자 볼츠만법 기반 원유 확산 과정 시뮬레이션)

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • This paper describes a new simulation technique for advection-diffusion phenomena over the sea surface using the lattice Boltzmann method (LBM), capable of predicting oil dispersion from tankers. The LBM is used to solve the pollutant transport problem within the framework of the ocean environment. The sea space is represented by the lattices, where each lattice has the information on oil transportation. Since dispersed oils (i.e., oil droplets) at sea are transported by convection due to waves, buoyancy, and turbulent diffusion, the conservation of mass and many physical oil transport rules were used in the prediction model. Since the LBM is modeled using the uniform lattices and simple rules, it can be easily accelerated by the parallel mechanism, for example, GPU-accelerated method. The proposed model using the LBM is used to simulate a simple pollution event with the oil pollutants of 10,000 kL. The simulation results indicate that the LBM method accelerated with the GPU is 6 times faster than that without the GPU.

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

A Execution Performance Analysis of Applications using Multi-Process Service over GPU (다중 프로세스 서비스를 이용한 GPU 응용 동시 실행 성능 분석)

  • Kim, Se-Jin;Oh, Ji-Sun;Kim, Yoonhee
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.60-67
    • /
    • 2019
  • Graphical Processing Units(GPUs) achieve high performance undertaking from relatively uniformed computation in parallel. The technology related to General Purpose GPU(GPGPU) has been enhanced, which provides concurrent kernel execution of multi and diverse applications at the same time, but it is still limited to support resource sharing or planning. NVIDIA recently introduces Multi-Process Service(MPS), which allows kernels from different applications can be execute concurrently. However, the strength of MPS comes along with the characteristics of applications and the order of their execution. This paper shows the performance analysis of diverse scientific applications in real world. Based on the analysis, we prove that it is important to the identify characteristics of co-run applications, and to schedule multiple applications via profiling to maximize MPS functionality.