References
- Inan, A. and Balas, L., 2010, An Application of 2D Oil Spill Model to Mersin Coast, WSEAS Transactions on Environment and Development, 6(5), pp.345-354.
- Halil, K., 2007, A Third-order Upwind Scheme for the Advection-diffusion Equation Using Spreadsheets, Advances in Engineering Software, 38(9), pp.688-697. https://doi.org/10.1016/j.advengsoft.2006.10.006
- Nakano, T., Kasegawa, J. and Morishita, S., 1998, Coastal Oil Pollution Prediction by a Tanker Using Cellular Automata, OCEANS '98 Conference Proceedings, 3, pp.1324-1328.
- Sirakoulis, G., Karafyllidis, I., Thanailakis, A. and Tsalides, P., 2003, A Methodology for Modeling Ecological Systems Based on Cellular Automata, WSEAS Transactions on Computers, 2(4), pp.982-990.
- Rusinovic, Z. and Bogunovic, N., 2006, Cellular Automata Based Model for the Prediction of Oil Slicks Behavior, Proceedings of 28th International Conference on Information Technology Interfaces, pp.569-574.
- Shyue, S., Chung, J.S., Hong, S.W., Nagata, S., Sarmento, A. and Koterayama, W., 2007, Oil Spill Modeling Using 3D Cellular Automata for Coastal Waters, Proceedings of the International Society of Offshore and Polar Engineers Conference, pp.546-553.
- Ha, S., Ku, N.K. and Lee, K.Y., 2011, Battle Space Model Based on Lattice Gas Automata for Underwater Warfare Simulation, Proceedings of Asia Simulation Conference 2011, pp.361-376.
- Deng, B., Shi, B.C. and Wang, G.C., 2005, A New Lattice Bhatnagar-Gross-Krook Model for the Convection-diffusion Equation with a Source Term, Chinese Physics Letters, 22(2), pp.267-270. https://doi.org/10.1088/0256-307X/22/2/001
- Chopard, B., Falcone, J.L. and Latt, J., 2009, The Lattice Boltzmann Advection-diffusion Model Revisited, The European Physical Journal Special Topics, 171(1), pp.245-249. https://doi.org/10.1140/epjst/e2009-01035-5
- Shi, B. and Guo, Z., 2009, Lattice Boltzmann Model for Nonlinear Convection-diffusion Equations, Physical Review E, 79(1), p.016701. https://doi.org/10.1103/PhysRevE.79.016701
- Tubbs, K., 2010, Lattice Boltzmann Modeling for Shallow Water Equations Using High Performance Computing, Doctoral Thesis, Louisiana State University.
- Zhou, J.G., 2011, Lattice Boltzmann Method for Advection and Anisotropic Dispersion Equation, Journal of Applied Mechanics, 78(2), pp.021007-5. https://doi.org/10.1115/1.4002572
- Tubbs, K.R. and Tsai, F.T., 2011, GPU Accelerated Lattice Boltzmann Model for Shallow Water Flow and Mass Transport, International Journal for Numerical Methods in Engineering, 86(3), pp.316-334. https://doi.org/10.1002/nme.3066
- Hardy, J., Pomeau, J. and de Pazzis, O., 1973, Time Evolution of a Two-dimensional Classical Lattice System, Physical Review Letters, 31(5), pp.276-279. https://doi.org/10.1103/PhysRevLett.31.276
- Frisch, U., Hasslacher, B. and Pomeau, Y., 1986, Lattice-gas Automata for the Navier-Stokes Equation, Physical Review Letters, 56(13), pp.1505-1508. https://doi.org/10.1103/PhysRevLett.56.1505
- Bhatnagar, P.L., Gross, E.P. and Krook, M., 1954, A Model for Collision Processes in Gases, Physical Review, 94(3), pp.511-525. https://doi.org/10.1103/PhysRev.94.511
- Qian, Y.H., D'Humieres, D. and Lallemand, P., 1992, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters (EPL), 17(5), pp.479-484. https://doi.org/10.1209/0295-5075/17/6/001
- Nguyen, H., 2007, GPU Gems 3: Programming Techniques for High Performance Graphics and General-Purpose Computation, Addison-Wesley Education Publishers, Inc.
- Nvidia, C., 2007, Compute Unified Device Architecture Programming Guide, NVIDIA: Santa Clara, CA.