• 제목/요약/키워드: Parabolic problems

검색결과 76건 처리시간 0.021초

Convergence Characteristics of the Crank-Nicolson-Galerkin Scheme for Linear Parabolic Systems

  • Cho, Jin-Rae;Ha, Dae-Yul;Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1264-1275
    • /
    • 2002
  • This paper is concerned with the investigation on the stability and convergence characteristics of the Crank-Nicolson-Galerkin scheme that is widely being employed for the numerical approximation of parabolic-type partial differential equations. Here, we present the theoretical analysis on its consistency and convergence, and we carry out the numerical experiments to examine the effect of the time-step size △t on the h- and P-convergence rates for various mesh sizes h and approximation orders P. We observed that the optimal convergence rates are achieved only when △t, h and P are chosen such that the total error is not affected by the oscillation behavior. In such case, △t is in linear relation with DOF, and furthermore its size depends on the singularity intensity of problems.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

Lp and W1,p Error Estimates for First Order GDM on One-Dimensional Elliptic and Parabolic Problems

  • Gong, Jing;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권2호
    • /
    • pp.41-57
    • /
    • 2000
  • In this paper, we consider first order generalized difference scheme for the two-point boundary value problem and one-dimensional second order parabolic type problem. The optimal error estimates in $L_p$ and $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) as well as some superconvergence estimates in $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) are obtained. The main results in this paper perfect the theory of GDM.

  • PDF

MOTION IN PARABOLIC CYLINDRICAL COORDINATES: APPLICATION TO J2 GRAVITY PERTURBED TRAJECTORIES

  • Sharaf, M.A.;Selim, H.H.;Saad, A.S.
    • 천문학회지
    • /
    • 제39권4호
    • /
    • pp.147-150
    • /
    • 2006
  • In this paper, initial value problem for dynamical astronomy will be established using parabolic cylindrical coordinates. Computation algorithm is developed for the initial value problem of gravity perturbed trajectories. Applications of the algorithm for the problem of final state predication are illustrated by numerical examples of seven test orbits of different eccentricities. The numerical results are extremely accurate and efficient in predicating final state for gravity perturbed trajectories which is of extreme importance for scientific researches as well as for military purposes. Moreover, an additional efficiency of the algorithm is that, for each of the test orbits, the step size used for solving the differential equations of motion is larger than 70% of the step size used for obtaining its reference final state solution.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR A SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE

  • DABA, IMIRU TAKELE;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.655-676
    • /
    • 2021
  • A parameter uniform numerical scheme is proposed for solving singularly perturbed parabolic partial differential-difference convection-diffusion equations with a small delay and advance parameters in reaction terms and spatial variable. Taylor's series expansion is applied to approximate problems with the delay and advance terms. The resulting singularly perturbed parabolic convection-diffusion equation is solved by utilizing the implicit Euler method for the temporal discretization and finite difference method for the spatial discretization on a uniform mesh. The proposed numerical scheme is shown to be an ε-uniformly convergent accurate of the first order in time and second-order in space directions. The efficiency of the scheme is proved by some numerical experiments and by comparing the results with other results. It has been found that the proposed numerical scheme gives a more accurate approximate solution than some available numerical methods in the literature.

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

Free vibration of tapered arches made of axially functionally graded materials

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.569-594
    • /
    • 2013
  • The free vibration of axially functionally graded tapered arches including shear deformation and rotatory inertia are studied through solving the governing differential equation of motion. Numerical results are presented for circular, parabolic, catenary, elliptic and sinusoidal arches with hinged-hinged, hinged-clamped and clamped-clamped end restraints. In this study Differential Quadrature element of lowest order (DQEL) or Lagrangian Interpolation technique is applied to solve the problems. Three general taper types for rectangular section are considered. The lowest four natural frequencies are calculated and compared with the published results.

SOME RECENT TOPICS IN COMPUTATIONAL MATHEMATICS - FINITE ELEMENT METHODS

  • Park, Eun-Jae
    • Korean Journal of Mathematics
    • /
    • 제13권2호
    • /
    • pp.127-137
    • /
    • 2005
  • The objective of numerical analysis is to devise and analyze efficient algorithms or numerical methods for equations arising in mathematical modeling for science and engineering. In this article, we present some recent topics in computational mathematics, specially in the finite element method and overview the development of the mixed finite element method in the context of second order elliptic and parabolic problems. Multiscale methods such as MsFEM, HMM, and VMsM are included.

  • PDF

내부결함이 있는 고온 금형에서의 쌍곡선형 열전도 현상 (Phenomena of Hyperbolic Heat Conduction in the Hot Mold with an Inner Defect)

  • 이관수;임광옥;조형철;김우승
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.952-957
    • /
    • 2001
  • In the glass forming process, the phenomena of hyperbolic heat conduction in the hot mold with an inner defect are studied analytically. It is shown that the temperature predicted by the parabolic model is underestimated compared to the one by the hyperbolic model. As the rmal wave is reflected from the area with defects and then arrives at the surface supplied by the heat flux, it is expected that there exists thermal shock in the materials. The area with defects is assumed to be adiabatic since its thermal conductivity is much lower compared to the one of the material. The results also indicate that the sudden temperature -jump in the mold surface can cause diverse problems such as glass defect (embryo mark, etc), oxidation of mold and coating, and change of material properties.