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SOME RECENT TOPICS IN COMPUTATIONAL

MATHEMATICS — FINITE ELEMENT METHODS

Eun-Jae Park

Abstract. The objective of numerical analysis is to devise and an-
alyze efficient algorithms or numerical methods for equations arising
in mathematical modeling for science and engineering. In this ar-
ticle, we present some recent topics in computational mathematics,
specially in the finite element method and overview the development
of the mixed finite element method in the context of second order el-
liptic and parabolic problems. Multiscale methods such as MsFEM,
HMM, and VMsM are included.

1. Introduction

The basic mathematical models of science and engineering often take
the form of differential equations, typically expressing laws of physics
such as conservation of mass or momentum enhanced with various con-
stitutive relations between state variables and fluxes such as Hooke’s
law, Fourier’s law, Stokes’ law or Darcy’s law, etc. By determining the
solution of differential equations for given data, we may obtain desired
information concerning the physical process being modeled. Exact solu-
tions may sometimes be determined through symbolic computation by
hand or using software, but in most cases this is not possible, and the
alternative is to approximate solutions with numerical computations us-
ing a computer. Although massive computational effort is often needed,
the cost of computation is rapidly decreasing and new possibilities are
quickly being opened. The objective of numerical analysis is to devise
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and analyze efficient algorithms or numerical methods for equations of
mathematical models.

In this note, we present some recent topics in numerical analysis, spe-
cially in the finite element method (FEM) and overview the development
of the mixed finite element method in the context of second order elliptic
and parabolic problems. In the end, we include interesting results of the
survey conducted by I. Babuška [35]. We have made no attempt to list
exhaustive topics in numerical analysis.

2. FEM and Mixed FEM

The theory of the finite element method has been developed during
the last fifty years. The discovery of the FEM is usually attributed to R.
Courant. Nevertheless, there are some older references to finite element-
like methods [35]. The notion element was introduced in the 1950’s
by aerospace engineers performing elasticity computations. The notion
finite element was introduced by mathematicians later, in the 1960’s.

In principle, a finite element method can only be considered in relation
with a variational principle and a function space in which it is posed.
Each choice of these leads to a different finite element approximation.
So far, a great deal of progress has been made in FEM software. The
whole computational processes can be essentially automated including
the following steps:

preprocessing of input data, generation of triangulations, assembling
FE-matrices, solving discrete problems, postprocessing of output data, a
posteriori error estimates, graphical illustration of results.

Nevertheless, many theoretical questions, related to the foundations
of the method and being born by practical problems and their needs,
are still open.

The mixed finite element method was designed to compute both the
state variable and the flux simultaneously with comparable accuracy, be
it directly or through post-processing. In many applications, it seems
to yield better results than standard finite element methods when an
accurate approximation for the flux variable is needed.

In 1974, Brezzi [7] published his celebrated paper providing a theoret-
ical background for mixed finite element methods. His theory is based on
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two major assumptions, Z-ellipticity and the inf-sup condition, known
as LBB condition.

In 1977, Raviart and Thomas [24] constructed, for the first time, a fi-
nite element space satisfying the discrete LBB condition through the con-
struction of a projection, known as the Raviart-Thomas projection, to
approximate the Dirichlet problem for the Laplacian operator in planar
domain. The underlying Hilbert spaces are V = H( div ; Ω), W = L2(Ω).
Their finite elements are conforming (requiring Vh ⊂ V, Wh ⊂ W ).
While the requirement Wh ⊂ W does not represent any constraint, the
inclusion Vh ⊂ V implies some regularity on the elements of Vh, more
precisely, the normal components of vectors in Vh must be continuous
across the interelement boundaries. Applying Brezzi’s general theory,
Raviart and Thomas obtained explicit error estimates. Then, in 1980,
this Raviart-Thomas element was generalized and extended to the three-
dimensional case by Nedelec [21]. There Nedelec also developed approx-
imation spaces of H( curl ; Ω) and gave some application to Maxwell’s
equations and the equations of elasticity.

In 1980 Falk and Osborn [13] provided an abstract approach to the
analysis of mixed methods for elliptic boundary value problems. They
obtained quasi-optimal error estimates in the usual Sobolev norms.

Raviart-Thomas-Nedelec(RTN) elements received a considerable at-
tention and provided a source for many applications. In 1981, Johnson
and Thomée [16] studied mixed methods for second order elliptic and
parabolic problems.

Douglas and Roberts in 1985 [10] gave global error estimates in L2(Ω),
L∞(Ω), and H−s(Ω) for Dirichlet problems for the elliptic operator,

Lp = −div (a∇p + bp) + cp,

based on the RTN elements of index k ≥ 0. However, their technique
does not lead to an L∞(Ω)-error bound for the vector unknown. Scholtz
[27] derived an estimate in L∞(Ω) for u − uh which is optimal modulo
a factor of |log h| for k ≥ 1.

In 1985, Milner in his thesis [19] extended Douglas’ and Roberts’
results [10] to

Lp = −div (a(p)∇p + b(p)) + c(p).

Kwon and Milner [18] have derived, for the whole range of indexes k
in RTN, a quasi-optimal order estimate in L∞(Ω) for u − uh in the
semi-linear case using weighted L2-norms. Durán [11] derived, using the
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known properties of Ritz projection, sharp Lq-error estimates (1 ≤ q ≤
∞) when Lp = − div (a(p)∇p).

In 1989, Gastaldi and Nochetto [14] derived sharp asymptotic L∞(Ω)
error estimates for both the scalar and vector unknowns for linear second
order elliptic problems in an abstract setting satisfying the commuting
diagram property.

In 1995, Milner and Park [20] developed mixed methods for Lp =
− diva(∇p) and the minimal surface equation was treated as an appli-
cation.

Park [22] in the same year extended the results to fully nonlinear
elliptic problems in divergence form:

Lp = − diva(p,∇p) + b(p,∇p),

using RTN elements for k ≥ 1. Newton’s method was presented and
analyzed to solve the nonlinear algebraic equations resulting from mixed
finite element equations. Quadratic convergence of the algorithm was
proved.

However, the lowest order case (k = 0) was not covered in the paper
[22] and still remains open.

Fully nonlinear parabolic problems in divergence form are treated for
the first time in [17] and applications to some flow problems in porous
media are given in [23].

Many issues arise in actual implementation of the numerical methods.
Standard fully discrete schemes for nonlinear second order time depen-
dent problems would generate large, nonlinear systems of equations for
each time level tn. Since the different systems arise from an evolution
process, the approximate solution at time level tn will be a good initial
guess for the nonlinear system produced at time level tn+1. Clearly, the
smaller we take the time steps, the better these initial guesses are. With
good initial guesses, a Newton-Raphson linearization of the nonlinear
systems will converge quadratically. We see our efficiency trade-off. The
smaller the time steps the faster the Newton-convergence, but the larger
the total number of nonlinear systems that must be solved to reach a
specified time level.

The next point to note is that the construction of the Jacobian and its
evaluation for each iteration is a very large and time-consuming process.
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We are thus led to consideration of inexact or quasi-Newton lineariza-
tions which allow cheaper updates at the expense of possibly slower con-
vergence rates. The study of partial or efficient updates for Newton-like
methods is a major area of research interests [12].

In any of the linearization methods mentioned, a new large, symmet-
ric/nonsymmetric linear system must be solved at each iteration and
for each time step. The fill-in that would result from direct solutions
of each linear system for large, three dimensional applications would
swamp the computational effort. Therefore iterative procedures for these
large symmetric/nonsymmetric systems must be considered.

Since this linear solution is a part of the Newton iteration, it is nat-
ural to consider how the choices of the tolerances for the linear, inner
iteration and the Newton outer iteration can be chosen to minimize
computational effort. Again the size of the time-step should also be con-
sidered since an even larger outer time loop is in operation. The optimal
choice of a combination of time-step and iteration tolerances to minimize
computational time is an important research topic.

Of course, the convergence rates for the iterative process described
are heavily dependent upon the conditioning of the matrices involved.
In general, the matrices arising from these partial differential equations
are highly ill-conditioned with the condition number growing as the re-
ciprocal of the square of the spatial discretization grid size. Therefore,
efficient preconditioners are essential for these applications.

Recently, in [31] we studied mixed finite element approximation of
reaction-diffusion equations. To linearize the mixed-method equations,
we used a two-grid scheme that relegates all of the Newton-like iterations
to grids much coarser than the original one, with no loss in order of
accuracy. The use of a multigrid-based solver for the indefinite linear
systems that arise at each iteration, as well as for the similar system
that arises on the fine grid, allows for even greater efficiency.

We mention [8, 25] for general account of mixed FEM. See Ciarlet [9]
for finite element methods for elliptic problems and the recent book by
V. Thomée [29] for parabolic problems.
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3. Some Recent Topics

In this section we mention only a few topics and start with a posteriori
error estimate.

•A Posteriori Error Estimates: A priori error estimates have been an
ingredient of finite element analysis from the outset, but a posteriori er-
ror estimates have really only emerged over the past decade to take their
natural place alongside a priori estimates. A posteriori error estimators
provide quantitative estimates for the actual error (as opposed to esti-
mates for the rate of convergence) and give base on adaptive refinement
strategy to optimize the computational work needed to reach a certain
accuracy. In this direction, we cite the first monograph on the subject
[30].

•Preconditioning: The convergence of a matrix iteration depends on
the properties of the matrix– the eigenvalues, the singular values, or
sometimes other information. The problem of interest can be trans-
formed so that the properties of the matrix are improved drastically.
This process of “preconditioning” is essential to most successful ap-
plications of iterative methods. We list a number of preconditioners:
Diagonal scaling or Jacobi, Incomplete Cholesky or LU factorization,
Coarse-grid approximation (multigrid iteration), Local approximation,
Block preconditioners and domain decomposition, Lower-order discretiza-
tion, Constant-coefficient or symmetric approximation, Splitting of a
multi-term operator, Dimensional splitting or ADI, One step of a clas-
sical iterative method, Periodic or convolution approximation, Unstable
direct method, Polynomial preconditioners. The reader is referred to
[1, 26] for summaries of the current state of the art. See also [15, 28] for
more topics in numerical linear algebra.

•Multiscale Methods: Multiscale modelling and computation is a
rapidly evolving area of research in computational science and engineer-
ing such as material science, chemistry, fluid dynamics and biology. For
example, natural porous media has extreme heterogeneity which requires
multiscale modelling and computation.

Several different but related mathematical frameworks for multiscale
computation have been proposed, including Multiscale finite element
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method (MsFEM) [48], Heterogeneous multiscale method (HMM) [43],
and Variational multiscale method (VMS/VMM) [51].

In the classical finite element method there is a missing information
in the numerical solution with the reasonable mesh size. The MsFEM
is based on the construction of local basis which captures a fine scale
nature. The MsFEM traces back to Babuska et al who defined the gen-
eralized FEM using non-polynomial basis functions in the one dimen-
sional case [36] and extended to 2-D case in [35]. Recently, T. Hou et al
[48] improved and proposed a multiscale finite element method. Main
idea is an introduction of so called oversampling. In oversampling, one
defines a basis function on a larger domain to capture more of fine scale
nature such as heterogeneity. The resulting scheme is of non-conforming
type since the basis functions do not piece together continuously at the
interfaces. An error analysis has been given in [49]. Chen and Hou [41]
extended this idea to mixed finite element method. Much progress has
been made more recently. For example, monlinear problem, numerical
homogenization, applications to parabolic problems and random media
are vigorously studied [45, 46, 50, 57].

On the other hand, in 1995 and 1998, Hughes et al [51, 52] developed
a variational multiscale formulation (VMsM). In 1999, Brezzi [40] inde-
pendently developed a similar framework. VMsM provides a framework
that allows formally scale separation from coarse scale and subgrid (fine
grid). This kind of two scale seperation seems natural from a computa-
tional point of view since discetization introduces one scale. This idea
has been successfully applied to convection-dominated diffusion equa-
tions and turbulent flow models [53]. Arbogast [33, 34] developed a
VMsM in the context of mixed formulation.

The heterogeneous multiscale method (HMM) recently introduced by
W. E and B. Engquist [43] draws a lot of attention. The HMM allows a
general framework for efficient numerical computation of problems with
multi-scales and multi-physics on multi-grids. The method relies on an
efficient coupling between the macroscopic and microscopic models. In
case the macroscopic model is not explicitly available or is invalid in part
of the domain, the microscopic model is used to supply the necessary
data for the macroscopic model. Applications of the method include
homogenization, molecular dynamics, kinetic models and interfacial dy-
namics, among others. Error analysis has been given in [44]. Finite
difference HMM is studied in [32].
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