In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.
In this paper, the fundamental equations are developed for the pulsatile laminar flow generated by changing the oscillatory flow with $0{\leq}f{\leq}48Hz$ into a steady one with $0{\leq}Re{\leq}2500$ in a rigid circular pipe. Analytical solutions for the wave propagation factor k, the axial distributions of cross-sectional mean velocity $u_m$ and pressure p are schematically derived and confirmed experimentally. The axial distributions of centerline velocity and pressure were measured by using Pitot-static tubes and strain gauge type pressure transducers, respectively. The cross-sectional mean velocity was calculated from the centerline velocity by applying the parabolic distribution of the laminar flow and it was confirmed by using the ultrasonic flowmeter. It was found that the axial distributions of cross-sectional mean velocity and pressure agree well with theoretical ones and depend only on the Reynolds number Re and angular velocity $\omega$.
In this article, a higher shear deformation theory (HSDT) is improved to consider the influence of thickness stretching in functionally graded (FG) plates. The proposed HSDT has fewer numbers of variables and equations of motion than the first-order shear deformation theory (FSDT), but considers the transverse shear deformation influences without requiring shear correction coefficients. The kinematic of the present improved HSDT is modified by considering undetermined integral terms in in-plane displacements and a parabolic distribution of the vertical displacement within the thickness, and consequently, the thickness stretching influence is taken into account. Analytical solutions of simply supported FG plates are found, and the computed results are compared with 3D solutions and those generated by other HSDTs. Verification examples demonstrate that the developed theory is not only more accurate than the refined plate theory, but also comparable with the HSDTs which use more number of variables.
This article present the free vibration analysis of simply supported perfect and imperfect (porous) FG beams using a high order trigonometric deformation theory. It is assumed that the material properties of the porous beam vary across the thickness. Unlike other theories, the number of unknown is only three. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the beams are simply supported the Navier's procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature.
This research investigates the free vibration of porous advanced composite plates resting on Winkler/Pasternak/ Kerr foundations by using a new hyperbolic quasi three dimensional (quasi-3D) shear deformation theory. The present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by parabolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate. In this work, we consider imperfect FG plates with porosities embedded within elastic Winkler, Pasternak or Kerr foundations. Implementing an analytical approach, the obtained governing equations from Hamilton's principle according to FG plates are derived. The closed form solutions are obtained by using Navier technique, and natural frequencies of FG plates are found, for simply supported plates, by solving the results of eigenvalue problems. A comprehensive parametric study is presented to evaluate effects of the geometry of material, mode numbers, porosity volume fraction, Power-law index and stiffness of foundations parameters on free vibration characteristics of FG plates.
The present work is an attempt to study the vibration analysis of the single-walled carbon nanotubes (SWCNTs) under the effect of the surface irregularity using Donnell's model. The surface irregularity represented by the parabolic form. According to Donnell's model and three-dimensional elasticity theory, a novel governing equations and its solution are derived and matched with the case of no irregularity effects. To understand the reaction of the nanotube to the irregularity effects in terms of natural frequency, the numerical calculations are done. The results obtained could provide a better representation of the vibration behavior of an irregular single-walled carbon nanotube, where the aspect ratio (L/d) and surface irregularity all have a significant impact on the natural frequency of vibrating SWCNTs. Furthermore, the findings of surface irregularity effects on vibration SWCNT can be utilized to forecast and prevent the phenomena of resonance of single-walled carbon nanotubes.
Belkhodja, Y.;Ouinas, D.;Fekirini, H.;Olay, J.A. Vina;Achour, B.;Touahmia, M.;Boukendakdji, M.
Smart Structures and Systems
/
제29권3호
/
pp.395-420
/
2022
A new hybrid quasi-3D and 2D high-order shear deformation theory is studied in this mathematical formulation, for an investigation of the bending, free vibrations and buckling influences on a functionally graded material plate. The theoretical formulation has been begun by a displacement field of five unknowns, governing the transverse displacement across the thickness of the plate by bending, shearing and stretching. The transverse shear deformation effect has been taken into consideration, satisfying the stress-free boundary conditions, especially on plate free surfaces as parabolic variation through its thickness. Thus, the mechanical properties of the functionally graded plate vary across the plate thickness, following three distributions forms: the power law, exponential form and the Mori-Tanaka scheme. The mechanical properties are used to develop the equations of motion, obtained from the Hamilton principle, and solved by applying the Navier-type solution for simply supported boundary conditions. The results obtained are compared with other solutions of 2D, 3D and quasi-3D plate theories have been found in the literature.
We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).
이 논문은 elastica형 아치의 자유진동에 관한 연구이다. Elastica형 아치의 선형은 항상 일정한 곡선길이를 갖는 후좌굴 기둥의 정확탄성곡선을 이용하였다. 이 Elastica형 아치의 곡률항을 일반아치의 자유진동을 지배하는 미분방정식에 적용하여 고유진동수 및 진동형을 산출하였다. 수치해석 예에서는 회전-회전, 회전-고정 및 고정-고정의 지점조건을 고려하였다. 회전관성이 고유진동수에 미치는 영향을 분석하고, 아치의 높이비 및 세장비와 고유진동수와의 관계를 그림에 나타내었다. Elastica형 아치와 포물선형 아치의 고유진동수를 비교한 결과, elastica형 아치의 고유진동수가 포물선 아치의 고유진동수보다 매우 크게 나타나는 동적 특성을 보였다. 진동형의 전형적인 예를 그림에 나타내었다.
This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.