Browse > Article
http://dx.doi.org/10.12989/sss.2022.29.3.395

A new hybrid HSDT for bending, free vibration, and buckling analysis of FGM plates (2D & quasi-3D)  

Belkhodja, Y. (Laboratory of Science and Technology Environment and Valorization, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University)
Ouinas, D. (Laboratory of Science and Technology Environment and Valorization, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University)
Fekirini, H. (Mechanics and physics of materials Laboratory, Mechanical Engineering Department, Faculty of Technology, Djillali Liabes University)
Olay, J.A. Vina (Materials Science and Metallurgical Engineering Department, University of Oviedo, Viesques Campus)
Achour, B. (Civil Engineering Department, University of Ha'il, KSA)
Touahmia, M. (Civil Engineering Department, University of Ha'il, KSA)
Boukendakdji, M. (Civil Engineering Department, University of Ha'il, KSA)
Publication Information
Smart Structures and Systems / v.29, no.3, 2022 , pp. 395-420 More about this Journal
Abstract
A new hybrid quasi-3D and 2D high-order shear deformation theory is studied in this mathematical formulation, for an investigation of the bending, free vibrations and buckling influences on a functionally graded material plate. The theoretical formulation has been begun by a displacement field of five unknowns, governing the transverse displacement across the thickness of the plate by bending, shearing and stretching. The transverse shear deformation effect has been taken into consideration, satisfying the stress-free boundary conditions, especially on plate free surfaces as parabolic variation through its thickness. Thus, the mechanical properties of the functionally graded plate vary across the plate thickness, following three distributions forms: the power law, exponential form and the Mori-Tanaka scheme. The mechanical properties are used to develop the equations of motion, obtained from the Hamilton principle, and solved by applying the Navier-type solution for simply supported boundary conditions. The results obtained are compared with other solutions of 2D, 3D and quasi-3D plate theories have been found in the literature.
Keywords
bending; buckling; FGM plates; free vibration; HSDT-FGM; Quasi-3D and 2D theory; stretching effect;
Citations & Related Records
Times Cited By KSCI : 23  (Citation Analysis)
연도 인용수 순위
1 Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057   DOI
2 Zaoui, F.Z., Tounsi, A., Ouinas, D. and Olay, J.A.V. (2020), "A refined HSDT for bending and dynamic analysis of FGM plates", Struct. Eng. Mech., Int. J., 74(1), 105-119. https://doi.org/10.12989/sem.2020.74.1.105   DOI
3 Shokravi, M. and Jalili, N. (2017), "Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping", Smart Struct. Syst., Int. J., 20(5), 583-593. https://doi.org/10.12989/sss.2017.20.5.583   DOI
4 Celebi, K., Yarimpabuc, D. and Keles, I. (2016), "A unified method for stresses in FGM sphere with exponentially-varying properties", Struct. Eng. Mech., Int. J., 57(5), 823-835. https://doi.org/10.12989/sem.2016.57.5.823   DOI
5 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023   DOI
6 Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490   DOI
7 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005   DOI
8 Daikh, A.A. and Zenkour, A.M. (2019), "Effect of porosity on the bending analysis of various functionally graded sandwich plates", Mater. Res. Express, 6(6), 065703. https://doi.org/10.1088/2053-1591/ab0971   DOI
9 Darabi, A. and Vosoughi, A.R. (2016), "Hybrid inverse method for small scale parameter estimation of FG nanobeams", Steel Compos. Struct., Int. J., 20(5), 1119-1131. https://doi.org/10.12989/scs.2016.20.5.1119   DOI
10 Singh, V.K. and Panda, S.K. (2015), "Large amplitude free vibration analysis of laminated composite spherical shells embedded with piezoelectric layers", Smart Struct. Syst., Int. J., 16(5), 853-872. https://doi.org/10.12989/sss.2015.16.5.853   DOI
11 Shufrin, I. and Eisenberger, M. (2005), "Stability and vibration of shear deformable plates-first order and higher order analyses", Int. J. Solids Struct. 42(3-4), 1225-1251. https://doi.org/10.1016/j.ijsolstr.2004.06.067   DOI
12 Lal, R. and Saini, R. (2020), "Vibration analysis of FGM circular plates under non-linear temperature variation using generalized differential quadrature rule", Appl. Acoustics, 158, 107027. https://doi.org/10.1016/j.apacoust.2019.107027   DOI
13 Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct., Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755   DOI
14 Kawasaki, A. and Watanabe, R. (1988), "Powder metallurgical fabrication of the thermal-stress relief type of functionally gradient materials", Sintering'87, London, UK, Volume 2, pp. 1197-1202.
15 Kiran, M.C. and Kattimani, S.C. (2018), "Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate", Smart Struct. Syst., Int. J., 21(4), 493-519. https://doi.org/10.12989/sss.2018.21.4.493   DOI
16 Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9   DOI
17 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289   DOI
18 Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889   DOI
19 Ebrahimi, F. and Daman, M. (2017), "Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst., Int. J., 20(3), 351-368. https://doi.org/10.12989/sss.2017.20.3.351   DOI
20 Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", (ASCE). J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665   DOI
21 Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A. and Atmane, H.A. (2010), "Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations", Mech. Compos. Mater., 46, 425-434. https://doi.org/10.1007/s11029-010-9159-5   DOI
22 Niino, A. and Maeda, S. (1990), "Recent development status of functionally gradient materials", ISIJ Int., 30(9), 699-703. https://doi.org/10.2355/isijinternational.30.699   DOI
23 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2011), "Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions", Mech. Res. Commun., 38(5), 368-371. https://doi.org/10.1016/j.mechrescom.2011.04.011   DOI
24 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012a), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009   DOI
25 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012b), "A quasi3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005   DOI
26 Raminnea, M., Biglari, H. and Tahami, F.V. (2016), "Nonlinear higher order Reddy theory for temperaturedependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture", Struct. Eng. Mech., Int. J., 59(1), 153-186. https://doi.org/10.12989/sem.2016.59.1.153   DOI
27 Shimoda, N., Kitaguchi, S., Saito, T., Takigawa, H. and Koga, M. (1990), "Production of functionally gradient materials by applying low pressure plasma spray", Proceedings of the First International Symposium on Funtionally Gradient Materials, Sendai, Tokyo, Japan, pp. 151-156.
28 Fukushima, T., Kuroda, S. and Kitahara, S. (1990), "Gradient coatings formed by plasma twin torches and those properties", Proceedings of the First International Symposium on Functionally Gradient Materials, Tokyo, Japan, pp. 145-150.
29 Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085   DOI
30 Bourada, M., Tounsi, A., Houari, M.S.A. and Adda, B.E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177%2F1099636211426386   DOI
31 Mantari, J.L. and Soares, C.G. (2012b), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct., 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019   DOI
32 Le, C.I., Pham, V.N. and Nguyen, D.K. (2020), "Free vibration of FGSW plates partially supported by Pasternak foundation based on refined shear deformation theories", Math. Problems Eng., 13 p. https://doi.org/10.1155/2020/7180453   DOI
33 Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., Int. J., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267   DOI
34 Mantari, J.L. and Soares, C.G. (2012a), "Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory", Compos. Struct., 94(6), 1991-2000. https://doi.org/10.1016/j.compstruct.2012.01.005   DOI
35 Guerroudj, H.Z., Yeghnem, R., Kaci, A., Zaoui, F.Z., Benyoucef, S. and Tounsi, A. (2018), "Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory", Smart Struct. Syst., Int. J., 22(1), 121-132. https://doi.org/10.12989/sss.2018.22.1.121   DOI
36 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011   DOI
37 Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B, 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036   DOI
38 Amir, S., Arshid, E., Rasti-Alhosseini, S.A. and Loghman, A. (2020), "Quasi-3D tangential shear deformation theory for size-dependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Thermal Stress., 43(2), 133-156. https://doi.org/10.1080/01495739.2019.1660601   DOI
39 Arani, A.G., Cheraghbak, A. and Kolahchi, R. (2016), "Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory", Struct. Eng. Mech., Int. J., 60(3), 489-505. https://doi.org/10.12989/sem.2016.60.3.489   DOI
40 Ghugal, Y.M. and Sayyad, A.S. (2010), "A static flexure of thick isotropic plates using trigonometric shear deformation theory", J. Solid Mech., 2(1), 79-90.
41 Hanifi, H.A.L., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., Int. J., 64(5), 527-541. https://doi.org/10.12989/scs.2017.64.5.527   DOI
42 Hosseini-Hashemi, S., Salehipour, H. and Atashipour, S.R. (2012), "Exact three-dimensional free vibration analysis of thick homogeneous plates coated by a functionally graded layer", Acta Mech., 223, 2153-2166. https://doi.org/10.1007/s00707-012-0683-3   DOI
43 Kar, V.R. and Panda, S.K. (2016a), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115-116, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014   DOI
44 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089   DOI
45 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016   DOI
46 Mantari, J.L. and Soares, C.G. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shell", Compos. Part B, 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027   DOI
47 Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007   DOI
48 Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030   DOI
49 Meftah, A., Bakora, A., Zaoui, F.Z., Tounsi, A. and Adda Bedia, E.A. (2017), "A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Steel Compos. Struct., Int. J., 23(3), 317-330. https://doi.org/10.12989/scs.2017.23.3.317   DOI
50 Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B, 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004   DOI
51 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007   DOI
52 Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.A.L.S. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory", Compos. Struct., 69, 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003   DOI
53 Fukui, Y. (1991), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", JSME Int. J. Ser. 3, Vib., Control Eng., Eng., Ind., 34(1), 144-148. https://doi.org/10.1299/jsmec1988.34.144   DOI
54 Hebbar, N., Hebbar, I., Ouinas D. and Bourada, M. (2020), "Numerical modeling of bending, buckling, and vibration of functionally graded beams by using a higher-order shear deformation theory", Frattura ed Integrita Strutturale, 14(52), 230-246. https://doi.org/10.3221/IGF-ESIS.52.18   DOI
55 Iurlaro, L., Gherlone, M. and Di Sciuva, M. (2014), "Bending and free vibration analysis of functionally graded sandwich plates using the Refined Zigzag theory", J Sandw. Struct. Mater., 16(6), 669-699. https://doi.org/10.1177/1099636214548618   DOI
56 Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025   DOI
57 Atmane, H.A., Tounsi, A. and Mechab, I. (2010), "Free vibration analysis offunctionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory", Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x   DOI
58 Nguyen, T.K. (2014), "A higher-order hyperbolic shear deformation plate model for analysis of functionally graded materials", Int. J. Mech. Mater. Des., 11(2), 203-219. https://doi.org/10.1007/s10999-014-9260-3   DOI
59 Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Modell., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034   DOI
60 Vaghefi, R., Baradaran, G.H. and Koohkan, H. (2010), "Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrov - Galerkin (MLPG) method", Eng. Anal. Bound. Elem., 34(6), 564-573. https://doi.org/10.1016/j.enganabound.2010.01.005   DOI
61 Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Applied Math. Modell., 37(5), 3269-3281. https://doi.org/10.1016/j.apm.2012.08.008   DOI
62 Wu, C.P., Chiu, K.H. and Wang, Y.M. (2011), "RMVT-based meshless collocation and element free Galerkin methods for the quasi-3D analysis of multilayered composite and FGM plates", Compos. Struct., 93(2), 923-943. https://doi.org/10.1016/j.compstruct.2010.11.015   DOI
63 Jha, D.K., Tarun, K. and Singh, R.K. (2012), "Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates", Nucl. Eng. Des., 250, 8-13. https://doi.org/10.1016/j.nucengdes.2012.05.001   DOI
64 Kar, V.R. and Panda, S.K. (2016b), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Therm. Stress., 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623   DOI
65 Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7   DOI
66 Wu, C.P. and Li, H.Y. (2010), "An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates", Compos. Struct., 92(10), 2591-2605. https://doi.org/10.1016/j.compstruct.2010.01.022   DOI
67 Yuki, M., Murayama, T., Irisawa, T., Kawasaki, A. and Watanabe, R. (1990), "FGM'90", Proceedings of the 1st International Symposium on Functionally Gradient Materials, Sendai, FGM Forum, Tokyo, Japan, pp. 203-208.
68 Xiang, S. and Kang, G.W. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A/Solids, 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005   DOI
69 Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013), "Natural frequencies of sandwich plate with functionally graded face and homogeneous core", Compos. Struct., 96, 226-231. https://doi.org/10.1016/j.compstruct.2012.09.003   DOI
70 Zaoui, F.Z., Tounsi, A. and Ouinas, D. (2017), "Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory", Smart Struct. Syst., Int. J., 20(4), 509-524. https://doi.org/10.12989/sss.2017.20.4.509   DOI
71 Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech., 77(4), 197-214. https://doi.org/10.1007/s00419-006-0084-y   DOI
72 Sata, N., Sanada, N., Hirano, T. and Niino, M. (1990), "Fabrication of a functionally gradient material by using a self-propagating reaction process", Proceedings of the First Int. Symp. On Combustion and Plasma Synthesis of High-Temperature Materials, pp. 195-203.
73 Sasaki, M., Wang, Y., Hirano, T. and Hirai, T. (1989), "Design of SiC/C functionally gradient material and its preparation by chemical vapor deposition", J. Ceram. Soc. Japan, 97(1125), 539-543. https://doi.org/10.2109/jcersj.97.539   DOI
74 Zafarmand, H. and Kadkhodayan, M. (2015), "Three dimensional elasticity solution for static and dynamic analysis of multidirectional functionally graded thick sector plates with general boundary conditions", Compos. Part B, 69, 592-602. https://doi.org/10.1016/j.compositesb.2014.10.048   DOI
75 Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051   DOI
76 Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009   DOI
77 Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519   DOI
78 Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026   DOI
79 Zhang, H., Jiang, J.K. and Zhang, Z.C. (2014), "Threedimensional elasticity solutions for bending of generally supported thick functionally graded plates", Appl. Math. Mech., 35(11), 1467-1478. https://doi.org/10.1007/s10483-014-1871-7   DOI
80 Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001   DOI
81 Zhou, D., Cheung, Y.K., Au, F.T.K. and Lo, S.H. (2002), "Threedimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method", Int. J. Solids Struct., 39, 6339-6353. https://doi.org/10.1016/S0020-7683(02)00460-2   DOI
82 Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047   DOI
83 Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93, 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020   DOI
84 Belkhodja, Y., Ouinas, D., Zaoui, F.Z. and Fekirini, H. (2019), "An exponential-trigonometric higher order shear deformation theory (HSDT) for bending, free vibration, and buckling analysis of functionally graded materials (FGMs) plates", Adv. Compos. Lett., 28, 1-19. https://doi.org/10.1177/0963693519875739   DOI
85 Miyamoto, Y., Nakanishi, H., Tanaka, I., Okamoto, T. and Yamada, O. (1990), "Gas pressure combustion sintering of TiC-Ni FGM", Proceedings of the First International Symposium, FGM, Tokyo, Japan, pp. 257-262.
86 Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., Int. J., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309   DOI
87 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Methods Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO; 2-8   DOI
88 Chen, Y.Z. (2018), "Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response", Smart Struct. Syst., Int. J., 21(4), 469-477. https://doi.org/10.12989/sss.2018.21.4.469   DOI
89 Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011b), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002   DOI
90 Trinh, T.H., Nguyen, D.K., Gan, B.S. and Alexandrov, S. (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 58(3), 515-532. https://doi.org/10.12989/sem.2016.58.3.515   DOI
91 Ameur, M., Tounsi, A., Mechab, I. and El Bedia, A.A. (2011), "A new trigonometric shear deformation theory for bending analysis of functionally graded plates resting on elastic foundations", KSCE J. Civil Eng., 15(8), 1405-1414. https://doi.org/10.1007/s12205-011-1361-z   DOI
92 Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation", Smart Struct., Syst., Int. J., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081   DOI
93 Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008   DOI
94 Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., Int. J., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707   DOI