Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.5.483

Impacts of surface irregularity on vibration analysis of single-walled carbon nanotubes based on Donnell thin shell theory  

Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Sciences and Humanities, Prince Sattam bin Abdulaziz University)
Althobaiti, Saad (Department of Sciences and Technology, Ranyah University Collage, Taif University)
Yahia, I.S. (Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University)
Mohammed, Ibtisam M.O. (Department of Mathematics, Al_ukhwa College of science and Art, Al-Baha University)
Hussin, Amira M. (Department of Mathematics, Al-Aflaj College of Sciences and Humanities, Prince Sattam bin Abdulaziz University)
Mohamed, Abdel-Baset A. (Department of Mathematics, Al-Aflaj College of Sciences and Humanities, Prince Sattam bin Abdulaziz University)
Publication Information
Advances in nano research / v.12, no.5, 2022 , pp. 483-488 More about this Journal
Abstract
The present work is an attempt to study the vibration analysis of the single-walled carbon nanotubes (SWCNTs) under the effect of the surface irregularity using Donnell's model. The surface irregularity represented by the parabolic form. According to Donnell's model and three-dimensional elasticity theory, a novel governing equations and its solution are derived and matched with the case of no irregularity effects. To understand the reaction of the nanotube to the irregularity effects in terms of natural frequency, the numerical calculations are done. The results obtained could provide a better representation of the vibration behavior of an irregular single-walled carbon nanotube, where the aspect ratio (L/d) and surface irregularity all have a significant impact on the natural frequency of vibrating SWCNTs. Furthermore, the findings of surface irregularity effects on vibration SWCNT can be utilized to forecast and prevent the phenomena of resonance of single-walled carbon nanotubes.
Keywords
Donnell thin shell theory; irregularity; single-walled carbon nanotubes; vibration analysis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Choi, W.B., Bae, E., Kang, D., Chae, S., Cheong, B. and Ko, J. (2004), "Aligned carbon nanotubes for nanoelectronics", Nanotechnology, 15(10), S512-S516.   DOI
2 Chuen, J. (2017), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", J. Nanomater., 11(5700),1-6. https://doi.org/10.1155/2017/6142927,1-6.   DOI
3 Collins, P.G. and Avouris, P. (2000), "Nanotubes for electronics", Sci. Am., 283(6), 62-69.   DOI
4 Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Effects of the growth time and the thickness of the buffer layer on the quality of the carbon nanotubes", Appl. Math. Model., 36, 4988-5000. https://doi.org/10.1155/2017/6142927.   DOI
5 Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.   DOI
6 Foroutan K., Ahmadi H. and Carrera E. (2019), "Nonlinear vibration of imperfect FG-CNTRC cylindrical panels under external pressure in the thermal environment", Compos. Struct., 227, 111310. https://doi.org/10.1016/j.compstruct.2019.111310.   DOI
7 Foroutan K., Carrera E. and Ahmadi H. (2021), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech. A Solids, 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.   DOI
8 Iijima S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.   DOI
9 Liu, J., Fan, S.S. and Dai, H.J. (2004), "Recent advances in methods of forming carbon nanotubes", MRS Bull., 29(4), 244-250. https://doi.org/10.1557/mrs2004.75.   DOI
10 Yi, X., Li, B. and Wang, Z. (2019), "Vibration analysis of fluid conveying carbon nanotubes based on nonlocal timoshenko beam theory by spectral element method", Nanomaterials, 9(12), 1780. https://doi.org/10.3390/nano9121780.   DOI
11 Dai, H.J. (2002), "Carbon nanotubes: Opportunities and challenges", Surface Sci., 500(1-3), 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8.   DOI
12 Baughman, R.H., Zakhidov, A.A. and de Heer, W.A. (2002), "Carbon nanotubes-the route toward applications", Science, 297(5582), 787-792. https://doi.org/10.1126/science.1060928/   DOI
13 Chowdhury, R., Wang, C., Adhikari, S. (2010), "Low frequency vibration of multiwall carbon nanotubes with heterogeneous boundaries", J. Phys. D Appl. Phys., 43, 085405.   DOI
14 Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A. and Ootuka Y. (2002), "Carbon nanotube devices for electronics", Physica B, 323(1-4), 107-114. https://doi.org/10.1016/S0921-4526(02)00993-6.   DOI
15 Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircr. Spacecr. Sci., 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.   DOI
16 Selim, M.M. (2011), "Vibrational analysis of initially stressed carbon nanotubes", Acta Phys. Pol. A, 119(6), 778-782.   DOI
17 He, X.Q., Eisenberger, M. and Liew, K.M. (2006), "The effect of van der waals interaction modelling on the vibration characteristics of multiwalled carbon nanotubes", J. Appl. Phys., 100(12), 124317. https://doi.org/10.1063/1.2399331.   DOI
18 Khan, R., Khan, M.I., Almesfer, M.K., Elkhaleefa A., Ali, I.H., Ullah, A., Rahman, N., Khan, M.S., Khan, A.A. and Khan, A. (2022), "The structural and dilute magnetic properties of (Co, Li) co-doped-ZnO semiconductor nanoparticles", MRS Commun., 1-6. https://doi.org/10.1557/s43579-022-00153-0.   DOI
19 Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031.   DOI
20 Selim, M.M. (2020a), "Dispersion relation for transverse waves in pre-stressed irregular single-walled carbon nanotubes", Physica Scripta, 95(11), 115218.   DOI
21 Qian, D., Wagner, J.G., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002) "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129.   DOI
22 Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.   DOI
23 Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287.   DOI
24 Selim, M.M. (2020b), "Propagation of longitudinal waves in a single-walled carbon nanotube under thermoelastic damping", J. Micro Nano Lett., 15(11), 717-722.   DOI
25 Zargaripoor, A. and Bahrami, A. (2018), "Free vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach", J. Comput. Appl. Mech., 49(1), 102-124. https://doi.org/10.22059/JCAMECH.2018.249468.227.   DOI
26 Selim, M.M., Abe, S. and Harigaya, K. (2009), "Effects of initial compression stress on wave propagation in carbon nanotubes", Eur. Phys. J. B, 69(4), 523-528. https://doi.org/10.1140/epjb/e2009-00184-5.   DOI
27 Strozzi, M., Manevitch, L.I., Pellicano, F.,Smirnov, V.V. and Shepelev, D.S.(2014), "Low-frequency linear vibrations of single-walled carbon nanotubes: Analytical and numerical models", J. Sound Vib., 333(13), 2936-2957.   DOI
28 Ullah, A., Alzahrani, E.O., Shah, Z., Ayaz, M. and Zhang, S.I. (2019a), "Nanofluids thin film flow of Reiner-Philippoff fluid over an unstable stretching surface with brownian motion and thermophoresis effects", Coatings, 9(1), 21. https://doi.org/10.3390/coatings9010021.   DOI
29 Liu, R. and Wang, L. (2015), "Coupling between flexural modes in free vibration of single-walled carbon nanotubes", AIP Adv., 5(12), 127110. https://doi.org/10.1063/1.4937743.   DOI
30 Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.   DOI
31 Selim, M.M. (2021), "Torsional vibration of irregular single-walled carbon nanotube incorporating compressive initial stress effects", J. Mech., 37, 260-269. https://doi.org/10.1093/jom/ufab002.   DOI
32 Selim, M.M and Ahmed, M.K. (2006), "Propagation and attenuation of seismic body waves in dissipative medium under initial and couple stresses", Appl. Math. Comput., 182(2), 1264-1274. https://doi.org/10.1016/j.amc.2006.05.005.   DOI
33 Selim M.M. and Nofal, T.A. (2021), "A mathematical model of torsional vibrations of SWCNTs incorporating surface irregularity effects", Physica Scripta, 96(5), 055709.   DOI
34 Selim, M.M. (2007), "Static deformation of an irregular initially stressed medium", Appl. Math. Comput., 188(2), 1274-1284. https://doi.org/10.1016/j.amc.2006.11.003.   DOI
35 Shaban, M. and Alibeigloo, A. (2014), "Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity", Lat. Am. J. Solid Struct., 11, 2122-2140. https://doi.org/10.1590/S1679-78252014001200002.   DOI
36 Thostenson, E.T. Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X.   DOI
37 Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019b), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Processes, 7(5), 262. https://doi.org/10.3390/pr7050262.   DOI
38 Ullah, A., Hafeez, A., Mashwani, W.K., Kumam, W., Kumam, P. and Ayaz, M. (2020), "Non-linear thermal radiations and mass transfer analysis on the processes of magnetite carreau fluid flowing past a permeable stretching/shrinking surface under cross diffusion and hall effect", Coatings, 10(6), 523. https://doi.org/10.3390/coatings10060523.   DOI
39 Xu, K.Y., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Phys., 75(2), 021013. https://doi.org/10.1115/1.2793133.   DOI
40 Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibration behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 1-18.
41 Preethi, K., Raghu, P., Rajagopal, A. and Reddy, J. (2018), "Nonlocal nonlinear bending and free vibration analysis of a rotating laminated nano cantilever beam", Mech. Adv. Mater. Struct., 25(5), 439-450. https://doi.org/10.1080/15376494.2016.1278062.   DOI
42 Avouris, P., Appenzeller, J., Martel, R. and Wind, S.J. (2003), "Carbon nanotube electronics", Proc. IEEE, 91(11), 1772-1784. https://doi.org/10.1109/JPROC.2003.818338.   DOI
43 Abuhimd, H., Uddin, G.M., Zeid, A., Jung, Y.J. and Kamarthi, S. (2013), "Chemical vapor deposition-grown vertically aligned single walled carbon nanotubes length assurance", Int. J. Adv. Manuf. Tech., 64(1-4), 545-553. https://doi.org/10.1007/s00170-012-4426-3.   DOI
44 Ajri, M. and Fakhrabadi, M.M.S. (2018), "Nonlinear free vibration of viscoelastic nanoplates based on modified couple stress theory", J. Comput. Appl. Mech., 49(1), 44-53. https://doi.org/10.22059/JCAMECH.2018.228477.129.   DOI
45 Wang, X., Jiang, Q., Xu, W., Cai, W., Inoue, Y. and Zhu, Y. (2013), "Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/ bismaleimide composites", Carbon, 53, 145-152. https://doi.org/10.1016/j.carbon.2012.10.041.   DOI
46 Belhadj, A., Boukhalfa, A. and Belalia, S.A. (2017), "Free vibration analysis of a rotating nanoshaft based SWCNT", Eur. Phys. J. Plus, 132, 513. https://doi.org/10.1140/epjp/i2017-11783-2.   DOI
47 Arghavan, S. and Singh, A. (2011), "On the vibrations of single-walled carbon nanotubes", J. Sound Vib., 330(13), 3102-3122. https://doi.org/10.1016/j.jsv.2011.01.032.   DOI