• Title/Summary/Keyword: Paper ash

Search Result 687, Processing Time 0.025 seconds

Effects of paper ash on the neutralization of nursery soil acidity (종이 소각재의 육묘상토(育苗床土)에 대한 산도교정(酸度矯正) 효과(效果) 연구(硏究))

  • Kim, Chang-Yong;Lee, Dong-Hoon;Park, No-Kwuon;Kim, Jong-Soo;Seo, Young-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.258-261
    • /
    • 2001
  • The paper industry produces about 6,000 ton of paper ashes yearly with by-products in Yuhan-Kimberly Ltd. The paper ashes was analyzed and evaluated for their potential as the soil acidity amendment materials. This study was conducted to investigate a reasonable amount of paper ashes for soil acidity amendment effect to be applied onto raising seedling of Calendula officinalis L. The mixed proportion of applied ashes, which was compared with agricultural lime, was treated to 0, 5, 10 and 15% (v/v) in mixed soil (pH 6.0) and the peat moss (pH 3.8) respectively. Consequently paper ashe was found to be more effective than agricultural lime at germination percentage, growth condition and in sharp initial increase of soil pH. The appropriate proportion of applied paper ash was 10% (v/v) at the soil-mix, and 15% (v/v) at the peat-moss. Soil application of paper ashes may provide supplemental quantities of K, Ca, Mg and other plant nutrients. But heavy metal concentrations in paper ash was low and should not limit application rates.

  • PDF

Setting and Hydration Heat Development Characteristics with Binder Types (결합재 종류에 따른 응결과 수화발열 특성)

  • 박찬규;이승훈;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, setting and hydration heat development characteristics with three binder types, type IV cement+fly ash, type IV cement+slag powder and type IV cement + limestone powder. were investigate. As results, it was shown that the limestone powder decreased the initial setting time regardless of replacement ratio, especially the range of 20~50% replacement ratio, and the 2nd peak was shifted ahead when the limestone powder replacement ratio increased. But for the f1y ash and the limestone powder, contrary results were obtained compared with the limestone powder.

  • PDF

Propoerties of Beneficated Fly Ashes (미연탄서를 제거한 플라이애쉬의 특성)

  • ;Sakai Etusuo;Daimon Masaki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.613-618
    • /
    • 1999
  • This paper discuss the chemical, physical and mineral properties of classified fly ashes by electrostatic precipitator and calcinated fly ashes at 50$0^{\circ}C$. The electrostatic precipitator in coal fired power plant has a number of hopper in the direction of flue gases. The properties of fly ashes collected at each hopper in the electrostatic precipitator are different. Superfine, fine and ordinary fly ashes can be collected respectively at each hopper. The carbon content in fly ash is influenced on the viscosity of paste. By calcination, the carbon content in fly ash is decreased and the fluidity of paste is improved.

  • PDF

Flexural Behavior of RC Beam Using High Volume Fly-Ash Cement (다량치환된 플라이애시 시멘트를 사용한 철근콘크리트 보의 휨거동)

  • Ahn, Young-Sun;Cha, Yeong-Dal
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only. However, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%). In order to evaluate the HVFAC flexural behavior, Analytical model was proposed and the computer program was developed. There were no differences between test results and analysis results. So, the proposed analytical model was reasonable.

Study on Characteristics of Fine Bottom Ash Based Geopolymer Mortar (미분쇄 바텀애시 기반 지오폴리머 모르타르 특성에 관한 연구)

  • Lim, Gwi-Hwan;Lee, Jeong-Bae;Jeong, Hyun-Kyu;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.418-424
    • /
    • 2016
  • This study is an experimental study on the recycling of bottom ash in coal ash discharged from a thermal power plant. Bottom ash has limited research on recycling because it has more porous and higher water absorption ratio than fly ash. In this paper, the bottom ash was pulverized to a specific surface area of $4,000cm^2/g$ in order to use as a binder, and the flow, compressive strength test and microstructure analysis of the bottom ash based geopolymer mortar were performed. The flow measurement results of the geopolymer mortar showed that the flow rate was improved by increasing mixing water as the molar concentration of activator was increased. Compressive strength increased with increasing curing temperature and molar concentration. Through the microstructure analysis, we could confirm the geopolymer gel produced by the reaction of the condensation polymerization. It is considered that it is possible to make the bottom ash based geopolymer concrete through proper molar concentration of activator and high temperature curing.

Effect of the Modification of PCC with NCC on the Paper Properties (NCC를 이용한 PCC의 개질이 종이 물성에 미치는 영향)

  • Ming, He;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.136-143
    • /
    • 2015
  • It is well known that the use of PCC as a filler for printing paper making brought about the serious deterioration of strength properties of paper, although PCC could be helpful to reduce the energy consumption. The use of modified PCC with NCC was tried to solve and/or reduce the strength deterioration problem. NCC was prepared from SwBKP by the acid hydrolysis. There was no significant changes in chemical properties and crystalline structure. However the cyrstallinity of NCC was higher than those of SwBKP. The different dosage of NCC was applied to modify the properties of PCC. 0.1% of NCC dosage was enough to improve ash retention and paper properties. The use of modified PCC with NCC as a filler improved ash retention, bulk, opacity and formation without the serious deterioration of strength properties. Thus the use of modified PCC with NCC might be helpful for not only reduction of energy consumption but also increase of filler dosage without the significant sacrifice of strength properties by the optimization of retention system.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

Experiment Study for Fracture Characterist of the Ash solid (석탄회 고형물의 파괴특성에 관한 실험적 연구)

  • 조병완;박종빈;김효원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.335-340
    • /
    • 2002
  • By the recently, Environmental pollution is serious by the highly economic growth and expansion of lively country basic industry. Especially, in case of industrial waste and life waste leaped into a pollution source. Also, research for processing of waste and recycling countermeasure is a pressing question on national dimension because it is prohibited an ocean disposal and reclamation. In this study, it looked for fracture characteristic value of recycling a coal ash to decrease environmental pollution by picky and exhaustion of natural resources and to reduce self-weight to prepare for a tall building and earthquake. So a coal ash examined to be possible to do as construction material. It achieved compressive strength test and three points bending test with initial notch depth rate and age for variables to show a basic research data. From the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. From the results of the compressive strength test, the elastic modulus was experimentally proposed. Also on the basis of the three points bending test, the fracture parameters - notch sensitivity, fracture energy, initial compliance were experimentally proposed. The results that the strength and fracture energy value are lower than concrete or mortar is described in this paper. Also, it shows that the deflection at fracture decreases as the age increases and the notch sensitivity decrease. However, it is judged to be available to construction material if research is continuously gone forward.

  • PDF

Soil stabilization by ground bottom ash and red mud

  • Kim, Youngsang;Dang, My Quoc;Do, Tan Manh;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper presents results of a compressive investigation conducted on weathered soil stabilized with ground bottom ash (GBA) and red mud (RM). The effects of water/binder ratio, RM/GBA ratio, chemical activator (NaOH and $Na_2SiO_3$) and curing time on unconfined compressive strength of stabilized soils were examined. The results show that the water/binder ratio of 1.2 is optimum ratio at which the stabilized soils have the maximum compressive strength. For 28 days of curing, the compressive strength of soils stabilized with alkali-activated GBA and RM varies between 1.5 MPa and 4.1 MPa. The addition of GBA, RM and chemical activators enhanced strength development and the rate of strength improvement was more significant at the later age than at the early age. The potential environmental impacts of stabilized soils were also assessed. The chemical property changes of leachate from stabilized soils were analyzed in terms of pH and concentrations of hazardous elements. The observation revealed that the soil mixture with ground bottom ash and red mud proved environmentally safe.