• 제목/요약/키워드: Paenibacillus species

검색결과 63건 처리시간 0.032초

A report of eight unrecorded radiation resistant bacterial species in Korea isolated in 2018

  • Jang, Jun Hwee;Sathiyaraj, Gayathri;Sathiyaraj, Srinivasan;Lee, Jin Woo;Kim, Ju-Young;Maeng, Soohyun;Lee, Ki-Eun;Lee, Eun young;Kang, Myung Suk;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • 제7권3호
    • /
    • pp.210-221
    • /
    • 2018
  • Eight bacterial strains assigned to the phylum Firmicutes were isolated from the soil samples in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 18JY14-16, 18JY14-35, 18JY42-5, 18JY12-20, 18JY35-8, 18JY76-9, 18JY39-1 and 18JY54-12 were most closely related to Paenibacillus lupini (MH497638; 99.4%), Paenibacillus illinoisensis (MH497643; 99.8%), Paenibacillus tundrae (MH497658; 99.7%), Paenibacillus selenitireducens (MH497639; 99.4%), Paenibacillus eucommiae (MH 497640; 99.9%), Paenibacillus vini (MH497654; 99.4%), Paenibacillus gorillae (MH497647; 99.5%), and Paenibacillus macquariensis (MH497649; 99.9%) respectively. These Paenibacillus species were Gram-stain-positive, rod-shaped and radiation resistant bacteria. This is the first report of these nine bacterial species in Korea.

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan;Zhun Li;Yoon-Ho Kang;Mi-Kyung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.753-759
    • /
    • 2023
  • The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

Diversity of Paenibacillus spp. in the Rhizosphere of Four Sorghum(Sorghum bicolor) Cultivars Sown with Two Contrasting Levels of Nitrogen Fertilizer Assessed by rpoB-Based PCR-DGGE and Sequencing Analysis

  • Coelho, Marcia Reed Rodrigues;Mota, Fabio Faria Da;Carneiro, Newton Portilho;Marriel, Ivanildo Evodio;Paiva, Edilson;Rosado, Alexandre Soares;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.753-760
    • /
    • 2007
  • The diversity of Paenibacillus species was assessed in the rhizospheres of four cultivars of sorghum sown in Cerrado soil amended with two levels of nitrogen fertilizer(12 and 120 kg/ha). Two cultivars(IS 5322-C and IS 6320) demanded the higher amount of nitrogen to grow, whereas the other two(FBS 8701-9 and IPA 1011) did not. Using the DNA extracted from the rhizospheres, a Paenibacillus-specific PCR system based on the RNA polymerase gene(rpoB) was chosen for the molecular analyses. The resulting PCR products were separated into community fingerprints by DGGE and the results showed a clear distinction between cultivars. In addition, clone libraries were generated from the rpoB fragments of two cultivars(IPA 1011 and IS 5322-C) using both fertilization conditions, and 318 selected clones were sequenced. Analyzed sequences were grouped into 14 Paenibacillus species. A greater diversity of Paenibacillus species was observed in cultivar IPA 1011 compared with cultivar IS 5322-C. Moreover, statistical analyses of the sequences showed that the bacterial diversity was more influenced by cultivar type than nitrogen fertilization, corroborating the DGGE results. Thus, the sorghum cultivar type was the overriding determinative factor that influenced the community structures of the Paenibacillus communities in the habitats investigated.

Paenibacillus donghaensis sp. nov., a Xylan-degrading and Nitrogen-fixing Bacterium Isolated from East Sea Sediment

  • Choi, Jeong-Hwa;Im, Wan-Taek;Yoo, Jae-Soo;Lee, Sang-Mahn;Moon, Deok-Soo;Kim, Hyeon-Ju;Rhee, Sung-Keun;Roh, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.189-193
    • /
    • 2008
  • A Gram-positive and endospore-forming strain, $JH8^T$, was isolated from deep-sea sediment and identified as a member of the genus Paenibacillus on the basis of 16S rRNA gene sequence and phenotypic analyses. According to a phylogenetic analysis, the most closely related species was Paenibacillus wynnii LMG $22176^T$ (96.9%). Strain $JH8^T$ was also facultatively anaerobic and grew optimally at $20-25^{\circ}C$. The major cellular fatty acid was anteiso-$C_{15:0}$, and the DNA G+C content was 53.1mol%. The DNA-DNA relatedness between the isolate and Paenibacillus wynnii LMG $22176^T$ was 7.6%, indicating that strain $JH8^T$ and P. wynnii belong to different species. Based on the phylogenetic, phenotypic, and chemotaxonomic characteristics, strain $JH8^T$ would appear to belong to a novel species, for which the name Paenibacillus donghaensis sp. novo is proposed (type strain=KCTC $13049^T=LMG\;237S0^T$).

Diversity of Root-Associated Paenibacillus spp. in Winter Crops from the Southern Part of Korea

  • CHEONG HOON;PARK SOO-YOUNG;RYU CHOONG-MIN;KIM JIHYUN F.;PARK SEUNG-HWAN;PARK CHANG SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1286-1298
    • /
    • 2005
  • The genus Paenibacillus is a new group of bacilli separated from the genus Bacillus, and most of species have been isolated from soil. In the present study, we collected 450 spore-forming bacilli from the roots of winter crops, such as barley, wheat, onion, green onion, and Chinese cabbage, which were cultivated in the southern part of Korea. Among these 450 isolates, 104 Paenibacillus-like isolates were selected, based on their colony shape, odor, color, and endospore morphology, and 41 isolates were then finally identified as Paenibacillus spp. by 16S rDNA sequencing. Among the 41 Paenibacillus isolates, 23 were classified as P. polymyxa, a type species of the genus Paenibacillus, based on comparison of the 16S rDNA sequences with those of 32 type strains of the genus Paenibacillus from the GenBank database. Thirty-five isolates among the 41 Paenibacillus isolates exhibited antagonistic activity towards plant fungal and bacterial pathogens, whereas 24 isolates had a significant growth-enhancing effect on cucumber seedlings, when applied to the seeds. An assessment of the root-colonization capacity under gnotobiotic conditions revealed that all 41 isolates were able to colonize cucumber roots without any significant difference. Twenty-one of the Paenibacillus isolates were shown to contain the nifH gene, which is an indicator of $N_{2}$ fixation. However, the other 20 isolates, including the reference strain E681, did not incorporate the nifH gene. To investigate the diversity of the isolates, a BOX-PCR was performed, and the resulting electrophoresis patterns allowed the 41 Paenibacillus isolates to be divided into three groups (Groups A, B, and C). One group included Paenibacillus strains isolated mainly from barley or wheat, whereas the other two groups contained strains isolated from diverse plant samples. Accordingly, the present results showed that the Paenibacillus isolates collected from the rhizosphere of winter crops were diverse in their biological and genetic characteristics, and they are good candidates for further application studies.

A report of six unrecorded bacterial species isolated from soil samples in Korea

  • Da Som Kim;Mi Jin Jeon;Won-Jae Chi
    • Journal of Species Research
    • /
    • 제13권1호
    • /
    • pp.61-66
    • /
    • 2024
  • During an investigation of unrecorded prokaryotic species in Korea, six unrecorded bacterial strains were isolated from soil samples collected from Uljin-gun. Based on a similarity search using the 16S rRNA gene sequence of the isolated strains and the construction of the neighbor-joining phylogenetic tree, five strains were identified to the genus Pseudomonas of the family Pseudomonadaceae, while one strain was identified as a species belonging to the genus Paenibacillus of the family Paenibacillaceae. The details of these unreported species, including gram staining reaction, colony and cell morphology, basic biochemical characteristics, strain ID, and isolation source, are described in the description of the strains.

Purification and Identification of Paenibacillus sp., Isolated from Diseased Larvae of Allomyrina dichotoma (Linnaeus, 1771) (Coleoptera: Scarabaeidae) in Insect Farms

  • Kang, Tae Hwa;Han, Sang Hoon;Weon, Hang Yeon;Lee, Young Bo;Kim, Namjung;Nam, Sung Hee;Park, Hae Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제25권2호
    • /
    • pp.195-203
    • /
    • 2012
  • In reared populations of Allomyrina dichotoma, commercial insects, the skin of last instar larvae was changed softer with opaque white, and infested grubs eventually died. To clarify the cause of the symptom, we collected the larvae of A. dichotoma from five farms and examined their intestinal bacterial florae using pyrosequencing technique. From those results, a member of Paenibacillus was found only in the larvae showing the symptom of disease. Through PCR analysis using a Paenibacillus specific primer set, we obtained the partial 16S rRNA gene sequence and confirmed the microbe as Paenibacillus sp. For clear identification, a whole guts was extracted from each larva showing the sign of the disease and incubated at $70^{\circ}C$ for 15 min to isolate spore forming bacteria. After then, each content of guts was cultured on $MYPGP_{NAL}$ agar medium($12.5{\mu}g/ml$ of nalidixic acid) at $30^{\circ}C$. The 16S rRNA gene sequence analysis for the isolated bacteria showed that they were closely related to P. rigui(97.9% similarity), to P. chinjuensis(96.1% similarity), and to P. soli(95.3% similarity). Additional tests including API test and cellular fatty acid composition analysis were performed, but the strain couldn't be identified at species level, suggesting it may represent novel species of the genus Paenibacillus.

Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

  • Xu, Sheng Jun;Kim, Byung Sup
    • Mycobiology
    • /
    • 제42권2호
    • /
    • pp.158-166
    • /
    • 2014
  • In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.

김치로부터 분리된 항균 활성 세균 Paenibacillus kimchicus sp. nov. (Paenibacillus kimchicus sp. nov., an antimicrobial bacterium isolated from Kimchi)

  • 박아름;오지성;노동현
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.319-326
    • /
    • 2016
  • 병원성 미생물들에 대해 항균활성을 보이는 $W5-1^T$ 균주가 한국의 발효식품인 김치에서 분리되었다. 이 분리주는 그람염색변이성, 절대호기성, 간균, 내생포자형성과 주모성의 편모를 가지고 운동성을 나타내었다. 균주는 $15-40^{\circ}C$, pH 6.0-10.0, 0-4% NaCl 조건에서 생육하였다. 균주는 esculin과 xylan을 가수분해하였고, $\small{D}$-mannose을 동화하였으나 $\small{D}$-mannitol은 동화하지 못하였다. $W5-1^T$ 균주는 Listeria monocytogens, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi에 항균활성을 보였다. $W5-1^T$ 균주의 DNA의 G+C 함량은 52.6 mol%였다. 주요 호흡성 퀴논은 menaquinone-7 (MK-7)였고, 주요 세포성 지방산은 $C_{16:0}$, antieiso-$C_{15:0}$, $C_{18:0}$, and $C_{12:0}$였다. 균주는 세포벽 펩티도클리칸으로 meso-diaminopimelic acid을 함유하였다. 16S rRNA 유전자서열 분석에 근거하여 $W5-1^T$ 균주는 Paenibacillaceae 과로 분류되었으며 Paenibacillus pinihumi $S23^T$(98.4% similarity), P. tarimensis $SA-7-6^T$(96.4%) 균주와 높은 연관성을 보였다. 분리주와 P. pinihumi $S23^T$는 8.5%의 DNA-DNA 관련성을 보임으로 $W5-1^T$ 균주가 Paenibacillus 속의 한 종임을 보여주었다. 이러한 다각적 연구의 증거로 볼 때 $W5-1^T$ 균주는 Paenibacillus 속의 신종으로 사료되어 Paenibacillus kimchicus로 명명을 제안하며, 표준균주는 $W5-1^T$(=KACC $15046^T$=LMG $25970^T$)이다.