DOI QR코드

DOI QR Code

A report of six unrecorded bacterial species isolated from soil samples in Korea

  • Da Som Kim (Species Diversity Research Division, Biodiversity Research Department, National Institute of Biological Resources) ;
  • Mi Jin Jeon (Species Diversity Research Division, Biodiversity Research Department, National Institute of Biological Resources) ;
  • Won-Jae Chi (Species Diversity Research Division, Biodiversity Research Department, National Institute of Biological Resources)
  • 투고 : 2023.10.11
  • 심사 : 2023.11.27
  • 발행 : 2024.02.28

초록

During an investigation of unrecorded prokaryotic species in Korea, six unrecorded bacterial strains were isolated from soil samples collected from Uljin-gun. Based on a similarity search using the 16S rRNA gene sequence of the isolated strains and the construction of the neighbor-joining phylogenetic tree, five strains were identified to the genus Pseudomonas of the family Pseudomonadaceae, while one strain was identified as a species belonging to the genus Paenibacillus of the family Paenibacillaceae. The details of these unreported species, including gram staining reaction, colony and cell morphology, basic biochemical characteristics, strain ID, and isolation source, are described in the description of the strains.

키워드

과제정보

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment(MOE) of the Republic of Korea (NIBR202304106).

참고문헌

  1. Ash, C., F.G. Priest and M.D. Collins. 1993. Molecular identification of rRNA group bacilli 3 using a PCR probe test. Antonie Van Leeuwenhoek 64:253-260. https://doi.org/10.1007/BF00873085
  2. Ashraf, S., M.R. Soudi, M.A. Amoozegar, M.M. Nikou and C. Sproer. 2017. Paenibacillus xanthanilyticus sp. nov. a xanthan-degrading bacterium isolated from soil. Int J Syst Evol Microbiol. 68:76-80.
  3. Baik, K.S., H.N. Choe, S.C. Park, E.M. Kim and C.N. Seong. 2001. Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol. 61:2763-2768. https://doi.org/10.1099/ijs.0.028308-0
  4. Berge, O., M.H. Guinebretiere, W. Achouak, P. Normand and T. Heulin. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol. 52:607-616. https://doi.org/10.1099/00207713-52-2-607
  5. Cheeptham, N. 2013. Advances and challenges in studying cave microbial diversity. In: N. Cheeptham (ed.), Cave Microbiomes: A Novel Resource for Drug Discovery. Springer Briefs in Microbiology, vol. 1, NY: Springer, New York.
  6. Choi, J.H., W.T. Im, J.S. Yoo, S.M. Lee, D.S. Moon, H.J. Kim, H.J. Kim, S.K. Rhee and D.H. Roh. 2008. Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. J Microbiol Biotechnol. 18:189-193.
  7. Chun, J., J.H. Lee, Y. Jung, K. Kim, S. Kim, B.K. Kim and Y.W. Lim. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol. 57:2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  8. Daud, N.S., A.R.J. Mohd Din, M.A. Rosli, Z.M. Azam, N.Z. Othman and M.R. Sarmidi. 2019. Paenibacillus polymyxa bioactive compounds for agricultural and biotechnological applications. Biocatal Agric Biotechnol. 18:101092.
  9. Hu, B.L., L.D. Shen, X. Lian, Q. Zhu, S. Liu, Q. Huang, Z.F. He, S. Geng, D.Q. Cheng, L.P. Lou, X.Y. Xu, P. Zheng and Y.F. He. 2014. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. PNAS 111:4495-4500. https://doi.org/10.1073/pnas.1318393111
  10. Jungblut, A.D., S.A. Wood, I. Hawes, J. Webster-Brown and C. Harris. 2012. The pyramid trough wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiol Ecol. 82:356-366. https://doi.org/10.1111/j.1574-6941.2012.01380.x
  11. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  12. Mulamoottil, M., B.G. Warner and E.A. McBean. 1996. Wetlands: Environmental gradients, boundaries and buffers. Boca Raton: CRC Press.
  13. Padda, K.P., A. Puri and C.P. Chanway. 2017. Paenibacillus polymyxa: a prominent biofertilizer and biocontrol agent for sustainable agriculture. In: V. Meena, P. Mishra, J. Bisht and A. Pattanayak (eds.), Agriculturally important microbes for sustainable agriculture. Springer, Singapore. pp. 165-191.
  14. Ridene, S., N. Werfelli, A. Mansouri, A. Landoulsi and C. Abbes. 2023. Bioremediation potential of consortium Pseudomonas Stutzeri LBR and Cupriavidus Metallidurans LBJ in soil polluted by lead. PLoS ONE 18:e0284120.
  15. Roux, V. and D. Raoult. 2004. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis isolated from blood cultures. Int J Syst Evol Microbiol. 54:1049-1054. https://doi.org/10.1099/ijs.0.02954-0
  16. Sah, S., S. Krishnani and R. Singh. 2021. Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Curr Res Microbial Sci. 2:100084.
  17. Scheldeman, P., K. Goossens, M. Rodriguez-Diaz, A. Pil, J. Goris, L. Herman, P.D. Vos, N.A. Logan and M. Heyndrick. 2004. Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol. 54:885-891. https://doi.org/10.1099/ijs.0.02822-0
  18. Valez, J.M.B., J.G. Martinez, J.T. Ospina and S.O. Agudelo. 2021. Bioremediation potential of Pseudomonas genus isolates from residual water, capable of tolerating lead through mechanisms of exopolysaccharide production and biosorption. Biotechnol Rep. 32:e00685.
  19. Weller, D.M. and R.J. Cook. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463-469. https://doi.org/10.1094/Phyto-73-463