Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6034

Paenibacillus kimchicus sp. nov., an antimicrobial bacterium isolated from Kimchi  

Park, A-rum (Department of Microbiology, Chungbuk National University)
Oh, Ji-Sung (Department of Microbiology, Chungbuk National University)
Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
Publication Information
Korean Journal of Microbiology / v.52, no.3, 2016 , pp. 319-326 More about this Journal
Abstract
An antimicrobial bacterium to pathogenic microorganisms, strain $W5-1^T$ was isolated from Korean fermented-food Kimchi. The isolate was Gram-staining-variable, strictly aerobic, rod-shaped, endospore-forming, and motile with peritrichous flagella. It grew at $15-40^{\circ}C$, at pH 6.0-10.0, and in the presence of 0-4% NaCl. Strain $W5-1^T$ could hydrolyze esculin and xylan, and assimilate $\small{D}$-mannose, but not $\small{D}$-mannitol. Strain $W5-1^T$ showed antimicrobial activity against Listeria monocytogens, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi. The G+C content of the DNA of strains $W5-1^T$ was 52.6 mol%. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major cellular fatty acids were $C_{16:0}$, antieiso-$C_{15:0}$, $C_{18:0}$, and $C_{12:0}$. The strain contained meso-diaminopimelic acid in cell-wall peptidoglycan. On the basis of 16S rRNA gene sequence and phylogenetic analysis, the strain W5-1 was shown to belong to the family Paenibacillaceae and was most closely related to Paenibacillus pinihumi $S23^T$ (98.4% similarity) and Paenibacillus tarimensis $SA-7-6^T$ (96.4%). The DNA-DNA relatedness between the isolate and Paenibacillus pinihumi $S23^T$ was 8.5%, indicating that strain $W5-1^T$ represented a species in the genus Paenibacillus. On the basis of the evidence from this polyphasic study, it is proposed that strain $W5-1^T$ is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus kimchicus sp. nov. is proposed. The type strain is $W5-1^T$ (=KACC $15046^T$ = $LMG 25970^T$).
Keywords
Paenibacillus kimchicus; antimicrobial activity; new species; taxonomy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463-464.   DOI
2 Kluge, A.G. and Farris, J.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18, 1-32.   DOI
3 Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.   DOI
4 Kurusu, K., Ohba, K., Arai, T., and Fukushima, K. 1987. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. (Tokyo) 40, 1506-1514.   DOI
5 Larkin, M.A., Balckshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.   DOI
6 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
7 Mesbah, M. and Whitman, W.B. 1989. Measurement of deoxyguanosine thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J. Chromatogr. 479, 297-306.   DOI
8 Nakajima, N., Chihara, S., and Koyama, Y. 1972. A new antibiotic, gatavalin. I. Isolation and characterization. J. Antibiot. (Tokyo) 25, 243-247.   DOI
9 Pichard, B., Larue, J.P., and Thouvenot, D. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133, 215-218.   DOI
10 Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.
11 Schaeffer, A.B. and Fulton, M.D. 1933. A simplified method of staing endospores. Science 77, 194.   DOI
12 Choi, J.H., Im, W.T., Yoo, J.S., Lee, S.M., Moon, D.S., Kim, H.J., Rhee, S.K., and Roh, D.H. 2008. Paenibacillus donghaensis sp. nov., a xylan-degrading and nitrogen-fixing bacterium isolated from East Sea sediment. J. Microbiol. Biotechnol. 18, 189-193.
13 Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407-477.
14 Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289-298.   DOI
15 Slepecky, R. and Hemphill, E. 1992. The genus Bacillus-nonmedical. The Prokaryotes, 2nd edn, pp. 1663-1696. In Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.). Springer, New York, USA.
16 Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. Methods for General and Molecular Bacteriology, pp. 607-655. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.). American Society for Microbiology, Washington, DC, USA.
17 Vogler, K. and Studer, R.O. 1966. The chemistry of the polymyxin antibiotics. Experientia 22, 345-354.   DOI
18 Chung, Y.R., Kim, C.H., Hwang, I., and Chun, J. 2000. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50, 1495-1500.   DOI
19 Euzeby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590-592. (List of prokaryotic names with standing in nomenclature. http://www.bacterio.net).   DOI
20 De Vos, P., Ludwig, W., Schleifer, K.H., and Whitman, W.B. 2009. Family IV. Paenibacillaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 3 (The Firmicutes), pp. 269. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.H., and Whitman, W.B. (eds.) Springer, New York, USA.
21 Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224-229.   DOI
22 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376.   DOI
23 Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
24 Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253-260.
25 Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992-993.
26 Fleming, H.P., Etchells, J.L., and Costilow, R.N. 1975. Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl. Microbiol. 30, 1040-1042.
27 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.   DOI
28 Heimbrook, M.E., Wang, W.L., and Campbell, G. 1989. Staining bacterial flagella easily. J. Clin. Microbiol. 27, 2612-2615.
29 Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457-470.   DOI
30 Kajimura, Y. and Kaneda, M. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. (Tokyo) 49, 129-135.   DOI