• Title/Summary/Keyword: Pad Force

Search Result 240, Processing Time 0.027 seconds

Effects of Friction Energy on Polishing Results in CMP Process (CMP 공정에서 마찰에너지가 연마결과에 미치는 영향)

  • Lee, Hyun-Seop;Park, Boum-Young;Kim, Goo-Youn;Kim, Hyoung-Jae;Seo, Heon-Deok;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1807-1812
    • /
    • 2004
  • The application of chemical mechanical polishing(CMP) has a long history. Recently, CMP has been used in the planarization of the interlayer dielectric(ILD) and metal used to form the multilevel interconnections between each layers. Therefore, much research has been conducted to understand the basic mechanism of the CMP process. CMP performed by the down force and the relative speed between pad and wafer with slurry is typical tribo-system. In general, studies have indicated that removal rate is relative to energy. Accordingly, in this study, CMP results will be analyzed by a viewpoint of the friction energy using friction force measurement. The results show that energy would not constant in the same removal rate conditions

Tactile Transceiver for Fingertip Motion Recognition and Texture Generation (손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치)

  • Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • We present a tactile information transceiver using a friction-tunable slider-pad. While previous tactile information devices were focused on either input or output functions, the present device offers lateral position/vertical direction detection and texture expression. In characterizing the tactile input performance, we measured the capacitance change due to the displacement of the slider-pad. The measured difference for a z-axis click was 0.146 nF/$40{\mu}m$ when the x-y axis navigation showed 0.09 nF/$750{\mu}m$ difference. In characterizing the texture expression, we measured the lateral force due to a normal load. We applied a voltage between parallel electrodes to induce electrostatic attraction in DC and AC voltages. We measured the friction under identical fingertip action conditions, and obtained friction in the range of 32-152 mN and lateral vibration in the force range of 128.1 mN at 60 V, 2 Hz. The proposed device can be applied to integrated tactile interface devices for mobile appliances.

Effect of Change in Water Content and NCO Index on the Static Comfort of Polyurethane Seat Foam Pad for Automobiles (물 함량과 NCO Index 변화가 자동차용 폴리우레탄 시트 폼 패드의 정적 안락감에 미치는 영향 고찰)

  • Lee, Byoung Jun;Lee, Sung Hoon;Choi, Kwon Yong;Kim, Sang-bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • In this study, we identified how the water content change in various NCO index affects the static comfort of polyurethane seat foam pad for automobiles. In order to identify factors that affect the static comfort, a static load test was performed using UTM to plot a hysteresis curve. The hardness of the foam when it was modified by 25, 65%, hysteresis loop area, hysteresis loss (%), and Sag factor were also obtained. By measuring the swelling ratio, it was confirmed that, as the water content increased in a fixed NCO index, the hardness and crosslinking density increased while the restoring force decreased due to the increase of urea bond. Also the Sag factor decreased due to the increase of surface hardness. As the NCO index increased in a fixed water content, the urethane and urea bond reacted more with isocyanate, leading to an increase in hardness and decrease in restoring force.

Two-Point Touch Enabled 3D Touch Pad (2개의 터치인식이 가능한 3D 터치패드)

  • Lee, Yong-Min;Han, Chang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.578-583
    • /
    • 2017
  • This paper presents a 3D touch pad technology that uses force touch sensors as a next-generation method for mobile applications. 3D touch technology requires detecting the location and pressure of touches simultaneously, as well as multi-touch function. We used metal foil strain gauges for the touch recognition sensor and detected the weak touch signals using Wheatstone bridge circuit at each strain gauge sensor. We also developed a touch recognition system that amplifies touch signals, converts them to digital data through a microprocessor, and displays the data on a screen. In software, we designed a touch recognition algorithm with C code, which is capable of recognizing two-point touch and differentiating touch pressures. We carried out a successful experiment to display two touch signals on a screen with different forces and locations.

Evaluation of Bonding Properties of Epoxy Solder Joints by High Temperature Aging Test (고온 시효 시험에 따른 Epoxy 솔더 접합부의 접합 특성 평가)

  • Kang, Min-Soo;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • Bonding properties of epoxy-containing solder joints were investigated by a high temperature aging test. Specimens were prepared by bonding an R3216 standard chip resistor to an OSP-finished PCB by a reflow process with two basic types of solder (SAC305 & Sn58Bi) pastes and two epoxy-solder (SAC305+epoxy & Sn58Bi+epoxy) pastes. In all epoxy solder joints, an epoxy fillet was formed in the hardened epoxy, lying around the outer edge of the solder joint, between the chip and the Cu pad. In order to analyze the bonding characteristics of solder joints at high temperatures, a high-temperature aging test at $150^{\circ}C$ was carried out for 14 days (336 h). After aging, the intermetallic compound $Cu_6Sn_5$ was found to have formed in the solder joint on the Cu pad, and the shear stress on the conventional solder joint was reduced by a significant amount. The reason that the shear force did not decrease much, even though in epoxy solder, was thatbecause epoxy hardened at the outer edge of the supported solder joints. Using epoxy solder, strong bonding behavior can be ensured due to this resistance to shear force, even in metallurgical changes such as those where intermetallic compounds form at solder joints.

Lateral deformation capacity and stability of layer-bonded scrap tire rubber pad isolators under combined compressive and shear loading

  • Mishra, Huma Kanta;Igarashi, Akira
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.479-500
    • /
    • 2013
  • This paper presents the experimental as well as analytical study conducted on layer-bonded scrap tire rubber pad (STRP) isolators to develop low-cost seismic isolators applicable to structures in developing countries. The STRP specimen samples were produced by stacking the STRP layers one on top of another with the application of adhesive. In unbonded application, the STRP bearings were placed between the substructure and superstructure without fastening between the contact surfaces which allows roll-off of the contact supports. The vertical compression and horizontal shear tests were conducted with varying axial loads. These results were used to compute the different mechanical properties of the STRP isolators including vertical stiffness, horizontal effective stiffness, average horizontal stiffness and effective damping ratios. The load-displacement relationships of STRP isolators obtained by experimental and finite element analysis results were found to be in close agreement. The tested STRP samples show energy dissipation capacity considerably greater than the natural rubber bearings. The layer-bonded STRP isolators serve positive incremental force resisting capacity up to the shear strain level of 150%.

Development of an Aircraft Hydraulic Brake Assembly with a Self-gap-adjuster (자동 간극 조절기를 갖는 항공기용 유압식 브레이크 조립체 개발)

  • Yi, Miseon;Song, Won-Jong;Kwon, Jun-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.444-451
    • /
    • 2020
  • This study was conducted to develop the hydraulic brake assembly for MUAV(Medium-altitude Unmanned Aerial Vehicle). The brake assembly has the self-gap adjuster which performs to maintain a constant gap between the piston and the disk, even if the friction pad wore down. The function of adjuster helps to keep the brake-reaction speed constant and prevent the unnecessary abrasion of the wear pad during the life of the brake assembly. The development of the aircraft hydraulic brake assembly with the self-gap-adjuster in this paper is the first ever in South Korea. The concept of the mechanism was defined and the formula which is necessary to calculate the friction force was set up in the paper. The tester was invented for the functional test and the proper operation of the self-gap-adjuster was confirmed through the test. Dynamo tests and flight tests were also carried out to verify the braking performance of the brake assembly.

Planarization & Polishing of single crystal Si layer by Chemical Mechanical Polishing (화학적 기계 연마(CMP)에 의한 단결정 실리콘 층의 평탄 경면화에 관한 연구)

  • 이재춘;홍진균;유학도
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.361-367
    • /
    • 2001
  • Recently, Chemical Mechanical Polishing(CMP) has become a leading planarization technique as a method for silicon wafer planarization that can meet the more stringent lithographic requirement of planarity for the future submicron device manufacturing. The SOI(Silicon On Insulator) wafer has received considerable attention as bulk-alternative wafer to improve the performance of semiconductor devices. In this paper, the objective of study is to investigate Material Removal Rate(MRR) and surface micro-roughness effects of slurry and pad in the CMP process. When particle size of slurry is increased, Material Removal rate increase. Surface micro-roughness is greater influenced by pad than by particle size of slurry. As a result of AM measurement, surface micro-roughness was improved from 27 $\AA$ Rms to 0.64 $\AA$Rms.

  • PDF

Motion Error Analysis of an Porous Air Bearing Table (다공질 공기베어링 테이블의 운동오차 해석)

  • Park, Cheon-Hong;Lee, Hu-Sang
    • 연구논문집
    • /
    • s.34
    • /
    • pp.101-112
    • /
    • 2004
  • In order to analyze the motion errors of the aerostatic stage, it is necessary to consider the influence of the moment variation occurredinside the pads. In this paper, a motion error anaysis method utilizing the transfer functions on the reaction force and moment is proposed, and general characteristics of the transfer functions are discussed. Calculated motion errors by the proposed method show good agreement with the ones calculated by Multi Pad Method, which is considered the entire table as an analysis object. Also, by the introduction of the transfer function of motion errors, which represent the relationship between the spatial frequency components of the rail form error and motion errors, motional characteristics of the porous aerostatic stage can be generalized. In detail, the influence of the spatial frequencies is analyzed quantatively, and the patterns of the insensitive frequencies which almost do not affect the linear motion error or angular motion error according to the rail length ratio and the number of the pad are verified. The relationship between the moment variation occurred inside the pads and the motion errors is also verified together.

  • PDF

The Study on the Machining Characteristics of 4 inch Wafer for the Optimal Condition (최적 가공 조건을 위한 4인치 웨이퍼의 가공 특성에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Jung-Hun;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.90-95
    • /
    • 2007
  • Single side final polishing is a very important role to stabilize a wafer finally before the device process on the wafer is executed. In this study, the machining variables, such as pressure, machining time, and the velocity of pad table were adopted. These parameters have the major influence on the characteristics of wafer polishing. We investigated the surface roughness changing these variables to find the optimal polishing condition. Pad, slurry, slurry quantity, and oscillation distance were set to the fixed variables. In order to reduce defects and find a stable machining condition, a hall sensor was used on the polishing process. AE sensor was attached to the polishing machine to verify optimal condition. Applying data analysis of the sensor signal, experiments were performed. We can get better surface roughness from loading the quasi static force and improving wafer-holding method.