DOI QR코드

DOI QR Code

Tactile Transceiver for Fingertip Motion Recognition and Texture Generation

손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치

  • 윤세찬 (한국과학기술원 바이오및뇌공학과) ;
  • 조영호 (한국과학기술원 바이오및뇌공학과)
  • Received : 2012.04.24
  • Accepted : 2013.03.29
  • Published : 2013.06.01

Abstract

We present a tactile information transceiver using a friction-tunable slider-pad. While previous tactile information devices were focused on either input or output functions, the present device offers lateral position/vertical direction detection and texture expression. In characterizing the tactile input performance, we measured the capacitance change due to the displacement of the slider-pad. The measured difference for a z-axis click was 0.146 nF/$40{\mu}m$ when the x-y axis navigation showed 0.09 nF/$750{\mu}m$ difference. In characterizing the texture expression, we measured the lateral force due to a normal load. We applied a voltage between parallel electrodes to induce electrostatic attraction in DC and AC voltages. We measured the friction under identical fingertip action conditions, and obtained friction in the range of 32-152 mN and lateral vibration in the force range of 128.1 mN at 60 V, 2 Hz. The proposed device can be applied to integrated tactile interface devices for mobile appliances.

본 논문은 정전기력을 이용한 마찰력 변조를 이용하여 손끝을 통한 촉각정보의 입출력을 동시 구현하는 소자를 제안하였다. 기존의 촉각소자들이 촉각정보의 입력 및 출력을 개별적으로 구현한 것에 비해 본 연구는 손끝의 수직/수평 방향 동작 인식과 질감 구현을 동시에 구현하였다는 점에서 차별성을 가진다. 실험분석을 통해 검증한 손끝 동작 인식기능은 수직방향의 클릭의 경우 0.146nF/$40{\mu}m$, 수평방향의 경우 0.09nF/$750{\mu}m$의 정전용량 변화를 통해 인식 가능하였으며, 질감 구현의 경우 정전기적 인력을 통해 마찰력을 32~152mN의 범위에서 제어할 수 있음을 확인하였다. 교류전압을 이용한 수평적 진동은 60V, 3Hz에서 최대 128.1mN의 마찰력 변조를 구현하였으며, 이는 기존 연구 대비 32% 향상을 보여준다. 본 연구는 손끝에서 정보의 입출력을 동시 구현하여 정보기기의 촉각인터페이스에 적용 가능하다.

Keywords

References

  1. Fagiani, R., Massi, F., Chatelet, E., Berthier, Y. and Akay, A., 2011, "Tactile Perception by Friction Induced Viabrations," Tribology International, Vol.44, Issue 10, Sep. pp.1100-1110. https://doi.org/10.1016/j.triboint.2011.03.019
  2. Yang, G., Yang, T.H., Kim, S., Kwon, D. and Kang, S., 2007, "Compact Tactile Display for Fingertips with Multiple Vibrotactile Actuator and Thermoelectric Module," Robotics, pp. 10-14.
  3. Wu, X., Kim, S.-H., Ji, C.-H. and Allen, M. G., 2011, "A Solid Hydraulically Amplified Piezoelectric Microvalve," Journal of Micromechanics and Microengineering, Vol.21, p. 095003. https://doi.org/10.1088/0960-1317/21/9/095003
  4. Koo, I.M., Jung, K., Koo, J.C., Nam, J.-D., Lee, Y.K., and Choi, H.R., 2008, "Development of Soft-Actuator-Based Wearable Tactile Display," IEEE Transactions on Robotics, Vol. 24, Jun. pp. 549-558. https://doi.org/10.1109/TRO.2008.921561
  5. Klintberg, L., 2002, "A Large Stroke, High Force Paraffin Phase Transition Actuator," Sensors and Actuators A: Physical, Vol. 96, Feb. pp. 189-195. https://doi.org/10.1016/S0924-4247(01)00785-3
  6. Niwa, M., Yanagida, Y., Noma, H., Hosaka, K. and Kume, Y., "Vibrotactile Apparent Movement by DC Motors and Voice-coil Tactors," Science And Technology.
  7. Talbi, A., Ducloux, O., Tiercelin, N., Deblock, Y., Pernod, P. and Preobrazhensky, V., 2006, "Vibrotactile Using Micromachined Electromagnetic Actuators Array," Journal of Physics: Conference Series, Vol. 34, Apr. pp. 637-642. https://doi.org/10.1088/1742-6596/34/1/105
  8. Kim, Y., Oakley, I. and Ryu, J., 2006, "Design and Psychophysical Evaluation of Pneumatic Tactile Display," 2006 SICE-ICASE International Joint Conference, Oct. pp. 1933-1938.
  9. Lee, S.S., 2008, "Braille code display device with a PDMS Membrane and Thermopneumatic Actuator," 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Jan. pp. 527-530.
  10. Lucyszyn, S., 2005, "A Micromachined Refreshable Braille Cell," Journal of Microelectromechanical Systems, Vol. 14, Aug. pp. 673-682. https://doi.org/10.1109/JMEMS.2005.845415
  11. Shikida, M., Imamura, T., Ukai, S., Miyaji, T. and Sato, K., 2008, "Fabrication of a Bubble-Driven Arrayed Actuator for a Tactile Display," Journal of Micromechanics and Microengineering, Vol. 18, Jun. p. 065012. https://doi.org/10.1088/0960-1317/18/6/065012
  12. Tang, H. and Beebe, D.J., 1998, "A microfabricated Electrostatic Haptic Display for Persons with Visual Impairments.," IEEE Transactions on Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society, Vol. 6, Sep. pp. 241-248. https://doi.org/10.1109/86.712216
  13. Yamamoto, A., Nagasawa, S., Yamamoto, H. and Higuchi, T., 2006, "Electrostatic Tactile Display with Thin Film Slider and Its Application to Tactile telepresentation systems.," IEEE Transactions on Visualization and Computer Graphics, Vol. 12, pp. 168-177. https://doi.org/10.1109/TVCG.2006.28