• Title/Summary/Keyword: PWM inverter

Search Result 1,384, Processing Time 0.021 seconds

Design of PWM Inverter for Harmonics Elimination (고조파 제거를 위한 PWM 인버터의 설계)

  • 김대익;정진태;이창기;조준익;전병실
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.10
    • /
    • pp.19-26
    • /
    • 1992
  • Generally, When we calculate notch angle to eliminate some selected harmonics using PWM inverter, we put the previously analysed notch angle formed by look-up table into memory, or perform the program to claculate notch angle iteratively with Fourier series. But, these methods are very difficult to control the system in real-time. Now, in this paper, we propose a new method to calculate notch angle using Walsh series, design real-time logic circuits which can be applied in 3 phase circuits and make one chip to reduce complexity and size of circuits using VLSI design technique.

  • PDF

Utility Interactive Photovoltaic Generation System Using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압초퍼를 이용한 계통연계형 태양광발전 시스템)

  • 김영철;이현우;서기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.325-331
    • /
    • 1999
  • In a utility interactive photovoltaic generation system. a PWM inverter is used for the connection between the p photovoltaic arrays and the utility. The dc current becomes pulsated when the conventional inverter system operates i in the continuous current mode and de current pulsation causes the distortion of the accurrent waveform. This paper p presents the reduced pulsation of de input current by operating the inverter with buck-boost chopper in the d discontinuous conduction mode. The dc current which contains harmonic component is analyzed by means of s separating into two terms of a ripple component and a direct component. The constant dc current without p pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provides a sinusoidal ac c current for domestic loads and the utility line with unity power factor.

  • PDF

A Modified Single-Phase Transformerless Z-Source Photovoltaic Grid-Connected Inverter

  • Liu, Hongpeng;Liu, Guihua;Ran, Yan;Wang, Gaolin;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1217-1226
    • /
    • 2015
  • In a grid-connected photovoltaic (PV) system, the traditional Z-source inverter uses a low frequency transformer to ensure galvanic isolation between the grid and the PV system. In order to combine the advantages of both Z-source inverters and transformerless PV inverters, this paper presents a modified single-phase transformerless Z-source PV grid-connected inverter and a corresponding PWM strategy to eliminate the ground leakage current. By utilizing two reversed-biased diodes, the path for the leakage current is blocked during the shoot-through state. Meanwhile, by turning off an additional switch, the PV array is decoupled from the grid during the freewheeling state. In this paper, the operation principle, PWM strategy and common-mode (CM) characteristic of the modified transformerless Z-source inverter are illustrated. Furthermore, the influence of the junction capacitances of the power switches is analyzed in detail. The total losses of the main electrical components are evaluated and compared. Finally, a theoretical analysis is presented and corroborated by experimental results from a 1-kW laboratory prototype.

A New Multilevel Inverter of H-bridge Topology using Bidirection Switch (양방향 스위치를 이용한 H-bridge 구조의 새로운 멀티레벨 인버터)

  • Lee, Sang-Hyeok;Kang, Seong-Gu;Lee, Tae-Won;Hur, Min-Ho;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2012
  • Recently, Switching devices become cheaper, depending on the multi-level inverters are considered as the power-conversion systems for high-power and power-quality demanding applications. The multi-level inverters can reduce the THD(Total Harmonic Distortion) as the output which is similar sinusoidal waveform by synthesizing several capacitor DC voltages. However it has some disadvantages such as increased number of components, complex PWM control method. Therefore, this paper is proposed the new multi-level inverter topology using an new H-bridge output stage with a bidirectional auxiliary switch. The proposed topology is the 4-level 3-phase PWM inverter with less switching part than conventional multi-level inverters and reactive power control possible. In order to understand the new multi-level inverter, topology analysis and switching patterns and modes according to the current loop are described in this paper. The proposed multi-level inverter topology is validated through PSIM simulation and the experimental results are provided from a prototype.

Peak-Valley Current Mode Controlled H-Bridge Inverter with Digital Slope Compensation for Cycle-by-Cycle Current Regulation

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1989-2000
    • /
    • 2015
  • In this paper, digital peak current mode control for single phase H-bridge inverters is developed and implemented. The digital peak current mode control is achieved by directly controlling the PWM signals by cycle-by-cycle current limitation. Unlike the DC-DC converter where the output voltage always remains in the positive region, the output of DC-AC inverter flips from positive to negative region continuously. Therefore, when the inverter operates in negative region, the control should be changed to valley current mode control. Thus, a novel control logic circuit is required for the function and need to be analyzed for the hardware to track the sinusoidal reference in both regions. The problem of sub-harmonic instability which is inherent with peak current mode control is also addressed, and then proposes the digital slope compensation in constant-sloped external ramp to suppress the oscillation. For unipolar PWM switching method, an adaptive slope compensation in digital manner is also proposed. In this paper, the operating principles and design guidelines of the proposed scheme are presented, along with the performance analysis and numerical simulation. Also, a 200W inverter hardware prototype has been implemented for experimental verification of the proposed controller scheme.

High efficiency & Low cost PCM Backlight Inverter for large Area LCD TV (대화면 LCD TV를 위한 고효율 및 저가형 PCM 방식 백라이트 인버터)

  • Jang, Young-Su;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Sug-Chin;Kim, Jong-Duck;Lee, Hyo-Bum;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.441-448
    • /
    • 2007
  • To enhance the competitive edge of the material cost, IP(Integrated Power) Board form of inverter circuit is widely used in large area LCD TV(Greater than or equal to 40 in.). This scheme is Two Stage System and one inverter drives multi-lamp in a parallel circuit. This paper analyzes the conventional IP Board inverter controlled with Pulse Width Modulation (PWM), and its problems such as serious hard switching and excessive circulating energy can be solved by a proposed Pulse Count Modulation (PCM) scheme. To confirm the validity and superiority of the proposed system, theoretical analysis and experimental results are presented.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Partial O-state Clamping PWM Method for Three-Level NPC Inverter with a SiC Clamp Diode

  • Ku, Nam-Joon;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1066-1074
    • /
    • 2015
  • This paper presents the reverse recovery characteristic according to the change of switching states when Si diode and SiC diode are used as clamp diode and proposes a method to minimize the switching loss containing the reverse recovery loss in the neutral-point-clamped inverter at low modulation index. The previous papers introduce many multiple circuits replacing Si diode with SiC diode to reduce the switching loss. In the neutral-point-clamped inverter, the switching loss can be also reduced by replacing device in the clamp diode. However, the switching loss in IGBT is large and the reduced switching loss cannot be still neglected. It is expected that the reverse recovery effect can be infrequent and the switching loss can be considerably reduced by the proposed method. Therefore, it is also possible to operate the inverter at the higher frequency with the better system efficiency and reduce the volume, weight and cost of filters and heatsink. The effectiveness of the proposed method is verified by numerical analysis and experiment results.

A Study on the Particular Harmonics Elimination in VSI-FED Induction Motor (전압형 인버터로 구동되는 유도전동기의 특정고조파제거에 관한 연구)

  • 전희종;김국진
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.2 no.2
    • /
    • pp.64-70
    • /
    • 1988
  • In many applications of inverter system, it is desirable to obtain an AC output voltage with variable frequency and amplitude. For the variable-speed AC motor drive, the system is one major area of application for the variable-frequency inverter. V ariable~voltage variable-frequency sinusoidal output in three-phase inverter is possible by employing the techniques developed. In this paper, the technique of particular harmonics elimination(PHE) in three-phase PWM inverter-output waveforms is introduced. The required switching patterns are determind on personal computer. Results are stored in look-up table in EPROM and used to control the switching of the inverter devices. The experimental results indicate that the loss in an induction motor is minimized to a degree by using this algorithm. The proposed PWM pattern is effective not only to the induction motor but also to the other electromagnetic machine such as Voltage Regulator, UPS.

  • PDF

Simulations of the Inverter-Fed Induction Motor Model Considering Leakage Current (누설 전류를 고려한 인버터 구동 유도 전동기 모델 시뮬레이션)

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.70-76
    • /
    • 2010
  • It is required to analyze the characteristics of inverter-fed induction motor according to the increase of inverter uses. However the previous simulation researches usually uses simplified induction motor model and fixed power source because the difficulties of their modeling and analysis. In this study, high frequency induction motor is simulated and the induction motor model considering high frequency characteristics is developed and it is combined with inverter model. With these, from the sinusoidal commercial frequency to PWM high frequency, induction motor characteristics can be simulated and analyzed.