• Title/Summary/Keyword: PWM converters

Search Result 381, Processing Time 0.031 seconds

Reduction of Input Current Harmonics for Three Phase PWM Converter Systems under a Distorted Utility Voltage

  • Park, Nae-Chun;Mok, Hyung-Soo;Kim, Sang-Hoon
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.428-433
    • /
    • 2010
  • This paper proposes a harmonics reduction technique for the input currents of three phase PWM converters. The quality of the phase angle information on the utility voltage connected to the PWM converters affects their control performance. Under a distorted utility voltage, the extracted phase angle based on the synchronous reference frame PLL method is distorted. This causes large harmonics in the input currents of a PWM converter. In this paper, a harmonics reduction method that makes the input currents in the PWM converter sinusoidal even under distorted utility conditions is proposed. By the proposed method, without additional hardware, the THD (Total Harmonic Distortion) of the input currents can be readily limited to below 5% which is the harmonic current requirements of IEEE std. 519. Its validity is verified by simulations and experimental results.

Control of Parallel Connected Three-Phase PWM Converters without Inter-Module Reactors

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.116-122
    • /
    • 2015
  • This paper presents a new current sharing control strategy for parallel-connected, synchronised three-phase DC-AC converters employing space vector pulse width modulation (SVPWM) without current sharing reactors. Unlike conventional control methods, the proposed method breaks the paths of the circulating current by dividing the switching cycle evenly between parallel connected equally rated converters. Accordingly, any inter-module reactors or circulating current control will be redundant, leading to reductions in system costs, size, and control algorithm complexity. Each converter in the new scheme employs a synchronous dq current regulator that uses only local information to attain a desired converter current. A stability analysis of the current controller is included together with a simulation of the converter and load current waveforms. Experimental results from a 2.5kVA test rig are included to verify the proposed control method.

Fault Diagnosis Method of Voltage Sensor in 3-phase AC/DC PWM Converters

  • Kim, Hyung-Seop;Im, Won-Sang;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.384-390
    • /
    • 2012
  • This paper proposes a fault diagnosis method of the line-to-line voltage sensors in 3-phase AC/DC pulse width modulation (PWM) converters. The line-to-line voltage sensors are an essential device to obtain the information of the grid voltages for controlling the 3-phase AC/DC PWM converters. If the line-to-line voltage sensors are mismeasured by various faults, the voltage sensors can obtain wrong information of the grid voltage. It has an adverse effect on the control of the converter. Therefore, the converter causes the unbalance input AC current and the DC-link voltage ripple in the 3-phase AC/DC PWM converter. Hence, fast fault detection and fault tolerant control are needed. In this paper, the fault diagnosis method is proposed and verified through simulations and experiments.

A New ZVS-PWM Full-Bridge Boost Converter

  • Baei, Mohammadjavad;Narimani, Mehdi;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Pulse-width modulated (PWM) full-bridge boost converters are used in applications where the output voltage is considerably higher than the input voltage. Zero-voltage-switching (ZVS) is typically implemented in these converters. A new ZVS-PWM full-bridge converter is proposed in this paper. The proposed converter does not have any of the disadvantages associated with other converters of this type, including a complicated auxiliary circuit, increased current stresses in the main power switches, and load-dependent ZVS operation. The operation of the proposed converter, its steady-state characteristics, and its design are explained and examined. The feasibility of the converter is confirmed with results obtained from an experimental prototype.

A Novel Diagnosis and Compensation Scheme for AC-DC Converters under Switching Fault Status (AC-DC 컨버터의 고장 시 진단 및 보상기법)

  • Lee Byoung-Kuk;Baek Ju-Won;Yoo Dong-Wook;Rim Gun-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.533-536
    • /
    • 2004
  • In this paper, a novel compensation scheme for ac-dc pwm converters under switching device fault status has been proposed, along with an effective diagnosis method. With the proposed scheme, the pwm converter can be properly operated even when one of the switching devices of the converter is out of control, so that it may ensure the performance and reliability of pwm converters to be increased. The developed scheme is explained in theoretically and the validity is verified by the informative simulation and experimental results in detail.

  • PDF

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

DDPWM Based Control of Matrix Converters

  • Li, Yu-Long;Choi, Nam-Sup;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.535-543
    • /
    • 2009
  • In this paper, pulse-width modulation (PWM) control strategy of various topologies of matrix converters is presented, which is based on direct duty ratio PWM (DDPWM). Because the DDPWM method has the characteristics of the inherent per-phase modular structure, it can be effectively applied to single-phase, two-phase and three-phase four-leg matrix converters as well as the common three-phase to three-phase matrix converter. Also, this paper treats command generation method in each matrix converter. The feasibility and validity of the proposed method are verified by experimental results.

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

Analysis of DC Link Ripple Currents in Three-Phase AC/DC/AC PWM Converters (3상 AC/DC/AC PWM 컨버터의 직류링크 리플전류 해석)

  • Park Young-Wook;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.223-226
    • /
    • 2001
  • In this paper, dc link ripple currents for three-phase ac/dc/ac PWM converters are analyzed in a frequency domain. The expression of the harmonic currents is developed by using switching functions and exponential Fourier series expansion. The dc link ripple currents with regard to power factor and modulation index are investigated. In addition, the effect of the displacement angle between the switching periods of line-side converters and load-side inverters on the do link ripple current is studied. The result of the do link current analysis is helpful in specifying the dc link capacitor size and its life time estimation.

  • PDF

Digital Current Controller with Smith-Predictor for PWM Converters

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 1996
  • From the cost-effective point of view, it is very important to design a current with the highest utilization factor of current capacity of power devices. This can be accomplished by a current controller without overshoot irrespective of the varying bounds of control voltage in PWM converters and the dead time due to the time delay. This paper suggests a novel decoupled controller with Smith-Predictor which has the fast control response without overshoot and steady stats error and also deal with the design method of the controller for PWM converters. The extensive digital simulations done by SIMULINK/MATLAB show that the suggested controller guarantees the full utilization of current capacity of power devices and the decoupled current control behavior.

  • PDF